HDU - 1402 A * B Problem Plus (FFT实现高精度乘法)
题意:计算A*B,A,B均为长度小于50000的整数。
这是FFT在大整数相乘中的一个应用,我本来想用NTT做的,但NTT由于取模很可能取炸,所以base必须设得很小,而且效率也比不上FFT。
A和B的存储均用long long,在计算乘积的时候转化成double,计算完成后再转回来即可。
测得base在精度允许范围内最多能开到10000。
把平方和快速幂的函数也写上了,可以当模板用~
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const int N=1e5+,inf=0x3f3f3f3f;
const db pi=acos(-);
const ll P[]= {,,,,};
struct cpl {
db x,y;
cpl operator-(cpl& b) {return {x-b.x,y-b.y};}
cpl operator+(cpl& b) {return {x+b.x,y+b.y};}
cpl operator*(cpl& b) {return {x*b.x-y*b.y,x*b.y+y*b.x};}
} A[N],B[N];
void change(cpl* a,int n) {
for(int i=,j=n>>,k; i<n-; ++i) {
if(i<j)swap(a[i],a[j]);
k=n>>;
while(j>=k)j-=k,k>>=;
j+=k;
}
}
void FFT(cpl* a,int n,int f) {
change(a,n);
for(int k=; k<n; k<<=) {
cpl wn= {cos(pi*f/k),sin(pi*f/k)};
for(int i=; i<n; i+=k<<) {
cpl w{,};
for(int j=i; j<i+k; ++j) {
cpl x=a[j],y=w*a[j+k];
a[j]=x+y,a[j+k]=x-y;
w=w*wn;
}
}
}
if(!~f)for(int i=; i<n; ++i)a[i].x/=n,a[i].y/=n;
}
struct Bigint {
static const int N=1e5+;
static const int bit=;
static const ll base=pow(,bit);
int n;
ll a[N];
ll& operator[](int x) {return a[x];}
void init(ll x) {
memset(a,,sizeof a);
a[]=x,n=;
}
void init(char* s) {
memset(a,,sizeof a);
int m=strlen(s);
for(int i=; i<m; ++i)a[(m--i)/bit]+=(s[i]-'')*P[(m--i)%bit];
n=(m-)/bit;
}
void Sqr() {
int m;
for(m=; m<=n*; m<<=);
for(int i=; i<m; ++i)A[i]= {a[i],};
FFT(A,m,);
for(int i=; i<m; ++i)A[i]=A[i]*A[i];
FFT(A,m,-);
for(int i=; i<m; ++i)a[i]=A[i].x+0.5;
for(int i=; i<m; ++i) {
if(a[i]>=base) {
a[i+]+=a[i]/base;
a[i]%=base;
if(i==m-)++m;
}
}
for(n=m-; n>&&!a[n]; --n);
}
void Mul(Bigint& b) {
int m;
for(m=; m<=n*||m<=b.n*; m<<=);
for(int i=; i<m; ++i)A[i]= {a[i],},B[i]= {b[i],};
FFT(A,m,),FFT(B,m,);
for(int i=; i<m; ++i)A[i]=A[i]*B[i];
FFT(A,m,-);
for(int i=; i<m; ++i)a[i]=A[i].x+0.5;
for(int i=; i<m; ++i) {
if(a[i]>=base) {
a[i+]+=a[i]/base;
a[i]%=base;
if(i==m-)++m;
}
}
for(n=m-; n>&&!a[n]; --n);
}
void Pow(int p) {
Bigint b=*this;
this->init();
for(; p; p>>=,b.Sqr())if(p&)this->Mul(b);
}
void pr() {
for(int i=n; i>=; --i) {
if(i==n)printf("%lld",a[i]);
else printf("%04lld",a[i]);
}
puts("");
}
} a,b;
char s1[N],s2[N]; int main() {
while(scanf("%s%s",s1,s2)==) {
a.init(s1),b.init(s2);
a.Mul(b);
a.pr();
}
return ;
}
HDU - 1402 A * B Problem Plus (FFT实现高精度乘法)的更多相关文章
- HDU 1402 A * B Problem Plus (FFT求高精度乘法)
A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- hdu 1402 A * B Problem Plus FFT
/* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才 ...
- HDU - 1402 A * B Problem Plus FFT裸题
http://acm.hdu.edu.cn/showproblem.php?pid=1402 题意: 求$a*b$ 但是$a$和$b$的范围可以达到 $1e50000$ 题解: 显然...用字符串模拟 ...
- HDU 1402 A * B Problem Plus (FFT模板题)
FFT模板题,求A*B. 用次FFT模板需要注意的是,N应为2的幂次,不然二进制平摊反转置换会出现死循环. 取出结果值时注意精度,要加上eps才能A. #include <cstdio> ...
- P1919 FFT加速高精度乘法
P1919 FFT加速高精度乘法 传送门:https://www.luogu.org/problemnew/show/P1919 题意: 给出两个n位10进制整数x和y,你需要计算x*y. 题解: 对 ...
- HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式
http://acm.hdu.edu.cn/showproblem.php?pid=1402 快速傅里叶变换优化的高精度乘法. https://blog.csdn.net/ggn_2015/artic ...
- SPOJ - VFMUL - Very Fast Multiplication FFT加速高精度乘法
SPOJ - VFMUL:https://vjudge.net/problem/SPOJ-VFMUL 这是一道FFT求高精度的模板题. 参考:https://www.cnblogs.com/Rabbi ...
- FFT实现高精度乘法
你应该知道$FFT$是用来处理多项式乘法的吧. 那么高精度乘法和多项式乘法有什么关系呢? 观察这样一个$20$位高精度整数$11111111111111111111$ 我们可以把它处理成这样的形式:$ ...
- BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
随机推荐
- django-admin 修改admin自带模版
还不知道怎么指定修改每个页面,我就把把所有修改写在一个页面,通过url进行判断是否是是否显示修改内容,修改的是change_form.html ,在admin里面可以找到 {% block objec ...
- SQL SERVER 2005 Express版, 精简版 下载
Microsoft SQL Server 2005 Express Edition(数据库) https://www.microsoft.com/zh-CN/download/details.as ...
- PAT 天梯赛 L2-024. 部落 【并查集】
题目链接 https://www.patest.cn/contests/gplt/L2-024 题意 给出 几个不同的圈子,然后 判断 有哪些人 是属于同一个部落的,或者理解为 ,有哪些人 是有关系的 ...
- Kattis - pseudoprime 【快速幂】
题意 给出两个数字 P 和 A 当p 不是素数 并且 满足a^p≡a(mod p) 就输出 yes 否则 输出 no 思路 因为 数据范围较大,用快速幂 AC代码 #include <cstdi ...
- EF删除集中方法对比
// DELETE api/<controller>/5 [HttpGet] public void delete(string id) { #region 官方推荐写法 /* var a ...
- Shell编程之for和select循环
一.for和select循环 1.for循环语法 for 变量名 in 变量取值列表 do 指令... done C语言型for循环 for ((exp1; exp2; exp3)) do 指令... ...
- Eclipse4.2安装样式插件
1.插件地址 http://eclipse-color-theme.github.com/update 点击Eclipse菜单 Help>>Install New Software... ...
- Centos7 搭建DNS服务器与原理配置详解
在搭建我们自己DNS服务器之前,先必须了解下DNS服务器的作用和原理. DNS是在互联网上进行域名解析到对应IP地址的服务器,保存互联网上所有的IP与域名的对应信息,然后将我们对网址的访问,解析成IP ...
- java多线程(内附实例:窗口售票问题、人和叉子的问题)
java多线程的开发有两种方法: (1)实现Runnable接口: (2)继承Thread类: 区别: (1)由于java中一个类只能继承一个父类,但是可以实现多个接口,所以实现Runnable接口比 ...
- 创建表空间及用户的SQL
--创建表SOFA空间: CREATE SMALLFILE TABLESPACE "SOFA" DATAFILE 'G:\oracle\product\10.2.0\ORADATA ...