(转)SPFA算法
原文地址:http://www.cnblogs.com/scau20110726/archive/2012/11/18/2776124.html
粗略讲讲SPFA算法的原理,SPFA算法是1994年西安交通大学段凡丁提出
是一种求单源最短路的算法
算法中需要用到的主要变量
int n; //表示n个点,从1到n标号
int s,t; //s为源点,t为终点
int d[N]; //d[i]表示源点s到点i的最短路
int p[N]; //记录路径(或者说记录前驱)
queue <int> q; //一个队列,用STL实现,当然可有手打队列,无所谓
bool vis[N]; //vis[i]=1表示点i在队列中 vis[i]=0表示不在队列中
几乎所有的最短路算法其步骤都可以分为两步
1.初始化
2.松弛操作
初始化: d数组全部赋值为INF(无穷大);p数组全部赋值为s(即源点),或者赋值为-1,表示还没有知道前驱
然后d[s]=0; 表示源点不用求最短路径,或者说最短路就是0。将源点入队;
(另外记住在整个算法中有顶点入队了要记得标记vis数组,有顶点出队了记得消除那个标记)
队列+松弛操作
读取队头顶点u,并将队头顶点u出队(记得消除标记);将与点u相连的所有点v进行松弛操作,如果能更新估计值(即令d[v]变小),那么就更新,另外,如果点v没有在队列中,那么要将点v入队(记得标记),如果已经在队列中了,那么就不用入队
以此循环,直到队空为止就完成了单源最短路的求解
SPFA可以处理负权边
定理: 只要最短路径存在,上述SPFA算法必定能求出最小值。
证明:
每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。(证毕)
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
判断有无负环:
如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)
SPFA的两种写法,bfs和dfs,bfs判别负环不稳定,相当于限深度搜索,但是设置得好的话还是没问题的,dfs的话判断负环很快
int spfa_bfs(int s)
{
queue <int> q;
memset(d,0x3f,sizeof(d));
d[s]=0;
memset(c,0,sizeof(c));
memset(vis,0,sizeof(vis)); q.push(s); vis[s]=1; c[s]=1;
//顶点入队vis要做标记,另外要统计顶点的入队次数
int OK=1;
while(!q.empty())
{
int x;
x=q.front(); q.pop(); vis[x]=0;
//队头元素出队,并且消除标记
for(int k=f[x]; k!=0; k=nnext[k]) //遍历顶点x的邻接表
{
int y=v[k];
if( d[x]+w[k] < d[y])
{
d[y]=d[x]+w[k]; //松弛
if(!vis[y]) //顶点y不在队内
{
vis[y]=1; //标记
c[y]++; //统计次数
q.push(y); //入队
if(c[y]>NN) //超过入队次数上限,说明有负环
return OK=0;
}
}
}
} return OK; }
int spfa_dfs(int u)
{
vis[u]=1;
for(int k=f[u]; k!=0; k=e[k].next)
{
int v=e[k].v,w=e[k].w;
if( d[u]+w < d[v] )
{
d[v]=d[u]+w;
if(!vis[v])
{
if(spfa_dfs(v))
return 1;
}
else
return 1;
}
}
vis[u]=0;
return 0;
}
(转)SPFA算法的更多相关文章
- 最短路径问题的Dijkstra和SPFA算法总结
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...
- [知识点]SPFA算法
// 此博文为迁移而来,写于2015年4月9日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vx93.html 1.前言 ...
- SPFA算法
SPFA算法 一.算法简介 SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化,它是一种十分高效的最短路算法 ...
- SPFA算法学习笔记
一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...
- 用scheme语言实现SPFA算法(单源最短路)
最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...
- SPFA算法心得
SPFA算法是改进后的Bellman-Ford算法,只是速度更快,而且作为一个算法,它更容易理解和编写,甚至比Dijkstra和B-F更易读(当然,Floyd是另一回事了,再也没有比Floyd还好写的 ...
- 最短路径--SPFA 算法
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...
- Bellman-Ford & SPFA 算法——求解单源点最短路径问题
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...
- UVA 10000 Longest Paths (SPFA算法,模板题)
题意:给出源点和边,边权为1,让你求从源点出发的最长路径,求出路径长度和最后地点,若有多组,输出具有最小编号的最后地点. #include <iostream> #include < ...
- 最短路径算法之四——SPFA算法
SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...
随机推荐
- Python Redis pipeline操作(秒杀实现)
设想这样的一个场景,你要批量的执行一系列redis命令,例如执行100次get key,这时你要向redis请求100次+获取响应100次.如果能一次性将100个请求提交给redis server,执 ...
- Linux服务器维护常用命令
# uname -a # 查看内核/操作系统/CPU信息 # /etc/issue # 查看操作系统版本 # cat /proc/cpuinfo # 查看CPU信息 # hostname # 查看计算 ...
- List contents of directories in a tree-like format
Python programming practice. Usage: List contents of directories in a tree-like format. #!/usr/bin/p ...
- 高阶函数,map,filter,sorted
Map:对列表中的每个元素进行操作 >>> def f(x): ... return x * x ... >>> map(f, [1, 2, 3, 4, 5, ...
- SQL查询语句的执行顺序
- 移动端tap或touch类型事件的点透问题认识
1.什么是点透? 举例说明:下图B元素是黄色方块,B元素中包含了C元素,C元素是一个a链接,本身自带click事件按,然后又一个半透明的粉色元素A遮盖在B元素上(看图中A元素是覆盖在B元素上的,不然B ...
- VS中一个强大的功能,将Json或者XML黏贴为类
有时候需要传递json,或者是json结构复杂,看的杂乱无章,我们可以将这个json复制下来,然后将它写成类的形式,VS中已经帮我们很好的实现了这个功能,我们只需要选择 编辑===>> ...
- 如何在Eclipse环境下安装PyDev并成功运行Python3.6代码
准备条件: 事先安装好了Eclipse 软件 Python3.6解释器也安装好了 安装PyDev ① 打开Eclipse,到help -> Eclipse markplace 找到PyDev - ...
- Android电容屏(二):驱动调试分析【转】
本文转载自:http://blog.csdn.net/xubin341719/article/details/7833383 以goodix的gt8105为例 一.总体架构 硬件部分:先看一个总体的图 ...
- HMM简单理解(来自quora&其他网上资料)
转载自quora: 连接:https://www.quora.com/What-is-a-simple-explanation-of-the-Hidden-Markov-Model-algorithm ...