JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has a non-negative integer length sisi. JRY will choose some continuous sections to race (at an unbelievable speed), so there are totally n(n+1)2n(n+1)2 different ways for him to ride. If JRY rides across from the ii-th section to the jj-th section, he would gain j−i+1j−i+1 pleasure. Now JRY wants to know, if he tries all the ways whose length is ss, what's the total pleasure he can get. Please be aware that in the problem, the length of one section could be zero, which means that the length is so trivial that we can regard it as 00.

InputThe first line of the input is a single integer T (T=5)T (T=5), indicating the number of testcases.

For each testcase, the first line contains one integer nn. The second line contains nnnon-negative integers, which mean the length of every section. If we denote the total length of all the sections as ss, we can guarantee that 0≤s≤500000≤s≤50000 and 1≤n≤1000001≤n≤100000. 
OutputFor each testcase, print s+1s+1 lines. The single number in the ii-th line indicates the total pleasure JRY can get if he races all the ways of length i−1i−1. 
Sample Input

2
3
1 2 3
4
0 1 2 3

Sample Output

0
1
1
3
0
2
3
1
3
1
6
0
2
7

题意:总区间中有n个数(n<=100000),求每种区间和,累加出所对应的区间长度(j-i+1)和;

思路:可以通过母函数得到方程,然后FFT求。 也有一种暴力一点的方式,分治+FFT:即求跨过每个点的区间的贡献。 然后两次FFT分别算出左边和右边的贡献。

(4900ms卡过去了。要用long double。

母函数的方法可以看:https://blog.csdn.net/kyleyoung_ymj/article/details/51712329

#include<bits/stdc++.h>
#define ll long long
#define double long double
#define rep(i,x,y) for(int i=x;i<=y;i++)
#define rep2(i,x,y) for(int i=x;i>=y;i--)
using namespace std;
const int maxn=;
const double pi=acos(-1.0);
struct cp
{
double r,i;
cp(){}
cp(double rr,double ii):r(rr),i(ii){}
cp operator +(const cp&x)const{return cp(r+x.r,i+x.i);}
cp operator -(const cp&x)const{return cp(r-x.r,i-x.i);}
cp operator *(const cp&x)const{return cp(r*x.r-i*x.i,i*x.r+r*x.i);}
};
ll ans[maxn];int s[maxn],sum[maxn],R[maxn],n;
cp a[maxn],b[maxn],W,w,p;
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=x*+c-'',c=getchar();
}
inline void fft(cp*c,int t)
{
int i,j,k;
for(i=;i<n;i++) R[i]<i?swap(c[R[i]],c[i]),:;
for(i=;i<n;i<<=)
for(j=,W={cos(pi/i),sin(pi/i)*t};j<n;j+=i<<)
for(k=,w={,};k<i;k++,w=w*W)
p=c[j+k+i]*w,c[j+k+i]=c[j+k]-p,c[j+k]=c[j+k]+p;
}
void solve(int l,int r)
{
if(l==r){ ans[s[l]]++; return ;}
int mid=(l+r)>> ,delta=sum[r]-sum[l-];
solve(l,mid); solve(mid+,r);
for(n=;(n-)<=delta;n<<=);
rep(i,,n-) R[i]=R[i>>]>>|(i&?n>>:); rep2(i,mid,l) a[sum[mid]-sum[i-]].r+=mid-i+;
rep(i,mid+,r) ++b[sum[i]-sum[mid]].r;
fft(a,); fft(b,);
rep(i,,n-) a[i]=a[i]*b[i];
fft(a,-);
rep(i,,delta) ans[i]+=(ll)((a[i].r)/n+0.5);
rep(i,,n) a[i]=b[i]=cp(.,.); rep2(i,mid,l) ++a[sum[mid]-sum[i-]].r;
rep(i,mid+,r) b[sum[i]-sum[mid]].r+=i-mid;
fft(a,); fft(b,);
rep(i,,n-) a[i]=a[i]*b[i];
fft(a,-);
rep(i,,delta) ans[i]+=(ll)((a[i].r)/n+0.5);
rep(i,,n) a[i]=b[i]=cp(.,.);
}
int main()
{
int N,T;
scanf("%d",&T);
while(T--){
read(N);
rep(i,,N) read(s[i]),sum[i]=sum[i-]+s[i];
rep(i,,sum[N]) ans[i]=;
solve(,N);
rep(i,,sum[N]) printf("%lld\n",ans[i]);
}
return ;
}

HDU - 5307 :He is Flying (分治+FFT)(非正解)的更多相关文章

  1. HDU 5307 He is Flying (生成函数+FFT)

    题目传送门 题目大意:给你一个长度为$n$的自然数序列$a$,定义一段区间的权值为这一段区间里所有数的和,分别输出权值为$[0,\sum a_{i}]$的区间的长度之和 想到了生成函数的话,这道题并不 ...

  2. FFT(快速傅里叶变换):HDU 5307 He is Flying

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8IAAAPeCAIAAABInTQaAAAgAElEQVR4nOy9fZReVXk3vP8ia+HqCy

  3. HDU 5307 He is Flying ——FFT

    卷积的妙用,显然我们可以求出所有符合条件的右端点的和,然后减去左端点的和. 就是最后的答案.然后做一次前缀和,然后就变成了统计差是一个定值的情况. 令$A(s[i])++$ $B(s[i])+=i$ ...

  4. HDU 5730 Shell Necklace cdq分治+FFT

    题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对 ...

  5. hdu_5683_zxa and xor(非正解的暴力)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5683 题意: 问题描述 zxa最近对按位异或(exclusive disjunction)产生了极大的 ...

  6. HDU 4251 --- 主席树(划分树是正解)

    题意:查询区间中位数 思路:模板题,相当于区间第K大的数,主席树可以水过,但划分树是正解.但还没搞明白划分树,先上模板 #include <iostream> #include <c ...

  7. BZOJ3110 K大数查询 【线段树 + 整体二分 或 树套树(非正解)】

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  8. 【P2387】魔法森林(SPFA非正解)

    题目链接 不会LCTqwq,看题解似乎SPFA也可以. 把边按a排序,从小到大每加一条边就以b为距离跑一遍SPFA,类似于Kruskal的想法吧…… 貌似是个暴力 (luoguLCT模块的题我都快通过 ...

  9. [Bzoj2120]数颜色 (非正解 )(莫队)

    2120: 数颜色 Time Limit: 6 Sec  Memory Limit: 259 MBSubmit: 6286  Solved: 2489[Submit][Status][Discuss] ...

随机推荐

  1. iOS CMTimeMake 和 CMTimeMakeWithSeconds 学习

    CMTime是专门用于标识电影时间的结构体,通常用如下两个函数来创建CMTime (1)CMTimeMake CMTime CMTimeMake ( int64_t value, //表示 当前视频播 ...

  2. yii框架模型操作

    命令行自动生成model模型类 php yii gii/model --ns=app\\modules\\v1\\models --tableName=SCM_tbInvBalance_new --m ...

  3. Linux Shell基础 多个命令中的分号(;)、与(&&) 、 或(||)

    概述 在 Bash 中,如果需要让多条命令按顺序执行,则有这样方法,如表 1 所示. 多命令执行符 格 式 作 用 : 命令1 ; 命令2 多条命令顺序执行,命令之间没有任何逻辑关系 &&am ...

  4. vi的搜索和替换

    搜索中进行替换 /which #搜索which cwthat #替换成that n #重复搜索 . #重复替换 一种类型的替换命令 g/pattern/s/old/new/g 第一个 g 表示是有选择 ...

  5. 【TopCoder】SRM151 DIV2 练习总结

    第一次做完整的SRM题,刷完感觉萌萌哒,不过自己对java中很多细节不熟练,还要边做题边google. 250分的题:判断字符串序列是否是前缀码,如果不是,返回第一个违反前缀码规则的字符串. 简单的暴 ...

  6. 主攻ASP.NET MVC4.0之重生:CheckBoxListHelper和RadioBoxListHelper的使用

    在项目中新建Helpers文件夹,创建CheckBoxListHelper和RadioBoxListHelper类. CheckBoxListHelper代码 using System; using ...

  7. java屏幕截取

    CaptureScreen.java ```import java.awt.Dimension; import java.awt.Rectangle; import java.awt.Robot; i ...

  8. 七 、linux正则表达式

    为处理大量的字符串而定义的一套规则和方法 1)linux正则表达式以行为单位处理 2)alians grep = “grep –color=auto”,让匹配的内容显示颜色 3)注意字符集,expor ...

  9. Android系统开发--灯光系统之电池灯的流程分析

    Android系统开发--Android灯光系统之电池灯的流程分析 前期系统准备 运行初始化,创建系统服务 创建电池服务,获得电池灯;创建监听者监听上报电池事件: mSystemServiceMana ...

  10. L1范数与L2范数正则化

    2018-1-26 虽然我们不断追求更好的模型泛化力,但是因为未知数据无法预测,所以又期望模型可以充分利用训练数据,避免欠拟合.这就要求在增加模型复杂度.提高在可观测数据上的性能表现得同时,又需要兼顾 ...