曼哈顿距离:

是由十九世纪的赫尔曼·闵可夫斯基所创词汇 ,是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和。

曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离,即d(i,j)=|xi-xj|+|yi-yj|。

对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离,因此,曼哈顿距离又称为出租车距离。

欧几里得距离:

欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

计算公式

欧几里得度量二维空间的公式

0ρ = sqrt( (x1-x2)^2+(y1-y2)^2 ) |x| = √( x2 + y2 )

欧几里得度量三维空间的公式

0ρ = √( (x1-x2)^2+(y1-y2)^2+(z1-z2)^2 ) |x| = √( x2 + y2 + z2 )

欧几里得度量n维空间的公式

n维欧氏空间是一个点集,它的每个点 X 或向量 x 可以表示为 (x[1],x[2],…,x[n]) ,其中 x[i](i = 1,2,…,n) 是实数,称为 X第i个坐标
两个点 A = (a[1],a[2],…,a[n]) 和 B = (b[1],b[2],…,b[n]) 之间的距离 ρ(AB) 定义为下面的公式:
ρ(AB) =√ [ ∑( a[i] - b[i] )^2 ] (i = 1,2,…,n)
向量 x = (x[1],x[2],…,x[n]) 的自然长度 |x| 定义为下面的公式:
|x| = √( x[1]^2 + x[2]^2 + … + x[n]^2 )
 
 
闵氏距离:

又叫做闵可夫斯基距离,是欧氏空间中的一种测度,被看做是欧氏距离的一种推广,欧氏距离是闵可夫斯基距离的一种特殊情况。
定义式:ρ(AB) = [ ∑( a[i] - b[i] )^p ]^(1/p) (i = 1,2,…,n)
闵可夫斯基距离公式中,当p=2时,即为欧氏距离;当p=1时,即为曼哈顿距离;当p→∞时,即为切比雪夫距离。
 
 
 

曼哈顿距离、欧几里得距离、闵氏距离(p→∞为切比雪夫距离)的更多相关文章

  1. Hdu 4312-Meeting point-2 切比雪夫距离,曼哈顿距离,前缀和

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=4312 Meeting point-2 Time Limit: 2000/1000 MS (Java/Ot ...

  2. BZOJ.3170.[TJOI2013]松鼠聚会(切比雪夫距离转曼哈顿距离)

    题目链接 将原坐标系每个点的坐标\((x,y)\)变为\((x+y,x-y)\),则原坐标系中的曼哈顿距离等于新坐标系中的切比雪夫距离. 反过来,将原坐标系每个点的坐标\((x,y)\)变为\((\f ...

  3. HDU 4312 Meeting point-2(切比雪夫距离转曼哈顿距离)

    http://acm.hdu.edu.cn/showproblem.php?pid=4312 题意:在上一题的基础上,由四个方向改为了八个方向. 思路: 引用自http://blog.csdn.net ...

  4. BZOJ 3170 松鼠聚会(切比雪夫距离转曼哈顿距离)

    题意 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. 思路 题目 ...

  5. bzoj 3170 Tjoi 2013 松鼠聚会 曼哈顿距离&&切比雪夫距离

    因为曼哈顿距离很好求,所以要把每个点的坐标转换一下. 转自:http://blog.csdn.net/slongle_amazing/article/details/50911504 题解 两个点的切 ...

  6. BZOJ 2735: 世博会 主席树+切比雪夫距离转曼哈顿距离

    2735: 世博会 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 51[Submit][Status][Discuss] D ...

  7. BZOJ3170: [Tjoi2013]松鼠聚会(切比雪夫距离转曼哈顿距离)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1524  Solved: 803[Submit][Status][Discuss] Descripti ...

  8. Bzoj 3170[Tjoi 2013]松鼠聚会 曼哈顿距离与切比雪夫距离

    3170: [Tjoi 2013]松鼠聚会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1318  Solved: 664[Submit][Stat ...

  9. BZOJ3170 [Tjoi2013]松鼠聚会 切比雪夫距离 - 曼哈顿距离 - 前缀和

    BZOJ3170 题意: 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最 ...

随机推荐

  1. 大数据Hadoop-2

    大数据Hadoop学习之搭建Hadoop平台(2.1) 关于大数据,一看就懂,一懂就懵. 大数据的发展也有些年头了,如今正走在风口浪尖上,作为小白,我也来凑一份热闹. 大数据经过多年的发展,有着不同的 ...

  2. JS调用C#中的变量

    今天早上做项目,需要使用JS来得到数据库里面表的行数.经过查找资料,知道可以使用在C#中定义一个全局变量.在JS中调用即可,自己总结一下:供日后参考; public string Str() { st ...

  3. 【题解】POI2014FAR-FarmCraft

    这题首先手玩一下一下数据,写出每个节点修建软件所需要的时间和到达它的时间戳(第一次到达它的时间),不难发现实际上就是要最小化这两者之和.然后就想到:一棵子树内,时间戳必然是连续的一段区间,而如果将访问 ...

  4. Windows关机过程分析与快速关机

    原文链接:http://blog.csdn.net/flyoxs/article/details/3710367 Windows开机和关机慢,很多时候慢得令人抓狂.特别是做嵌入式开发时(如XPE和Wi ...

  5. BZOJ2097: [Usaco2010 Dec]Exercise 奶牛健美操 贪心+伪树dp+二分

    //论全局变量的杀伤力....QAQ#include<cstdio> #include<iostream> #include<cstdlib> #include&l ...

  6. Windows Socket 编程_ 简单的服务器/客户端程序

    转载自:http://blog.csdn.net/neicole/article/details/7459021 一.程序运行效果图 二.程序源代码 三.程序设计相关基础知识 1.计算机网络    2 ...

  7. Codeforces Round #523 (Div. 2) A. Coins

    A. Coins 题目链接:https://codeforc.es/contest/1061/problem/A 题意: 给出n和s,要在1-n中选数(可重复),问最少选多少数可以使其和为s. 题解: ...

  8. css和javascript中图片路径的不同

    之前在写前端代码时,在图片路径的设置那里经常会遇到一个问题.比方说,我 (1)在根目录下面新建了个"images"文夹,里面放了张图片top.gif (2)在根目录下另外新建了两个 ...

  9. HDU2571--命运---DP

    http://acm.hdu.edu.cn/showproblem.php?pid=2571 #include "iostream" #include "cstdio&q ...

  10. linux基础(2)

    Linux基础题 作业一:1) 新建用户natasha,uid为1000,gid为555,备注信息为“master”useradd natashagroupmod -g 555 natashauser ...