codeforces #441 B Divisiblity of Differences【数学/hash】
1 second
512 megabytes
standard input
standard output
You are given a multiset of n integers. You should select exactly k of them in a such way that the difference between any two of them is divisible by m, or tell that it is impossible.
Numbers can be repeated in the original multiset and in the multiset of selected numbers, but number of occurrences of any number in multiset of selected numbers should not exceed the number of its occurrences in the original multiset.
First line contains three integers n, k and m (2 ≤ k ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — number of integers in the multiset, number of integers you should select and the required divisor of any pair of selected integers.
Second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109) — the numbers in the multiset.
If it is not possible to select k numbers in the desired way, output «No» (without the quotes).
Otherwise, in the first line of output print «Yes» (without the quotes). In the second line print k integers b1, b2, ..., bk — the selected numbers. If there are multiple possible solutions, print any of them.
3 2 3
1 8 4
Yes
1 4
3 3 3
1 8 4
No
4 3 5
2 7 7 7
Yes
2 7 7 【题意】:给你n个数a[i],让你找出一个大小为k的集合,使得集合中的数两两之差为m的倍数。 若有多解,输出任意一个集合即可。
【分析】:若一个集合中的数,两两之差为m的倍数,则他们 mod m 的值均相等。所以O(N)扫一遍,对于每个数a:vector v[a%m].push_back(a) 一旦有一个集合大小为k,则输出。
【代码】:
#include<bits/stdc++.h>
using namespace std; int main(){
int n,k,m;
cin>>n>>k>>m;
int arr[m]={};
long int val[n];
for(int i=;i<n;i++){
cin>>val[i];
arr[val[i]%m]++;
}
int pos=-;
for(int i=;i<m;i++){
if(arr[i]>=k){
pos=i;
break;
}
}
if(pos==-){
cout<<"No"<<endl;
}
else{
cout<<"Yes"<<endl;
int i=;
while(k--){
while(val[i]%m!=pos){
i++;
}
cout<<val[i]<<" ";
i++;
}
cout<<endl;
}
return ;
}
#include<bits/stdc++.h>
using namespace std; int a[], b[]; int main()
{
int n, k, m;
scanf("%d%d%d", &n, &k, &m);
memset(b, , sizeof(b));
for(int i = ; i <= n; i++)
{
scanf("%d", &a[i]);
b[a[i]%m]++;
}
int len = ;
for(int i = ; i <= ; i++)
{
if(b[i] >= k)
{
for(int j = ; j <= n && len < k; j++) if(a[j] % m == i) a[len++] = a[j];
}
}
if(len == ) puts("No");
else
{
puts("Yes");
for(int i = ; i < len; i++) printf("%d%c", a[i], i == len - ? '\n' : ' ');
}
return ;
}
codeforces #441 B Divisiblity of Differences【数学/hash】的更多相关文章
- Codeforces 876B:Divisiblity of Differences(数学)
B. Divisiblity of Differences You are given a multiset of n integers. You should select exactly k of ...
- Codeforces B. Divisiblity of Differences
B. Divisiblity of Differences time limit per test 1 second memory limit per test 512 megabytes input ...
- Codeforces#441 Div.2 四小题
Codeforces#441 Div.2 四小题 链接 A. Trip For Meal 小熊维尼喜欢吃蜂蜜.他每天要在朋友家享用N次蜂蜜 , 朋友A到B家的距离是 a ,A到C家的距离是b ,B到C ...
- B. Divisiblity of Differences
B. Divisiblity of Differencestime limit per test1 secondmemory limit per test512 megabytesinputstand ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad) B. Divisiblity of Differences
http://codeforces.com/contest/876/problem/B 题意: 给出n个数,要求从里面选出k个数使得这k个数中任意两个的差能够被m整除,若不能则输出no. 思路: 差能 ...
- Codeforces 876B Divisiblity of Differences:数学【任意两数之差为k的倍数】
题目链接:http://codeforces.com/contest/876/problem/B 题意: 给你n个数a[i],让你找出一个大小为k的集合,使得集合中的数两两之差为m的倍数. 若有多解, ...
- CodeForces - 876B Divisiblity of Differences
题意:给定n个数,从中选取k个数,使得任意两个数之差能被m整除,若能选出k个数,则输出,否则输出“No”. 分析: 1.若k个数之差都能被m整除,那么他们两两之间相差的是m的倍数,即他们对m取余的余数 ...
- Codeforces Beta Round #7 D. Palindrome Degree hash
D. Palindrome Degree 题目连接: http://www.codeforces.com/contest/7/problem/D Description String s of len ...
- 【codeforces 514C】Watto and Mechanism(字符串hash)
[题目链接]:http://codeforces.com/contest/514/problem/C [题意] 给你n个字符串; 然后给你m个询问;->m个字符串 对于每一个询问字符串 你需要在 ...
随机推荐
- NET中解决KafKa多线程发送多主题
NET中解决KafKa多线程发送多主题 一般在KafKa消费程序中消费可以设置多个主题,那在同一程序中需要向KafKa发送不同主题的消息,如异常需要发到异常主题,正常的发送到正常的主题,这时候就需要实 ...
- Java语言常用的运算符和表达式详解
Java提供了丰富的运算符,如算术运算符.关系运算符.逻辑运算符.位运算符等等.Java的表达式就是用运算符连接起来的符合Java规则的式子.运算符的优先级决定了表达式中运算执行的先后顺序.在编写程序 ...
- BZOJ4488 JSOI2015最大公约数
显然若右端点确定,gcd最多变化log次.容易想到对每一种gcd二分找最远端点,但这样就变成log^3了.注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂.由于区间只有 ...
- Boosting&Bagging
Boosting&Bagging 集成学习方法不是单独的一个机器学习算法,而是通过构建多个机器学习算法来达到一个强学习器.集成学习可以用来进行分类,回归,特征选取和异常点检测等.随机森林算法就 ...
- 一个简易的Python全站抓取系统
很长时间没有更新博客了,前一阵时间在做项目,里面有一个爬虫系统,然后就从里面整理了一点代码做成了一个简易的爬虫系统,还挺实用的. 简单说来,这个爬虫系统的功能就是:给定初始的链接池,然后设定一些参数, ...
- ng websocket
ng使用websocket 1.安装依赖库npm install ws --save 2.安装类型定义文件 npm install @types/ws --save 3.编写服务 import { I ...
- 第九届蓝桥杯C/C++B组题解附代码
1.标题:第几天 2000年的1月1日,是那一年的第1天.那么,2000年的5月4日,是那一年的第几天? 125天 打开日历就ok 2. 标题:明码 汉字的字形存在于字库中,即便在今天,16点阵的字库 ...
- Ecplise下设置jQuery和ExtJs自动提示
Spket 1.6.23下载: http://yunpan.cn/cjJYmEcMFIuuN 访问密码 5642 ext jsb下载:http://yunpan.cn/cjJYR7ZTzibQn ...
- tomcat部署多个项目,通过域名解析访问不同的网站
转摘自:http://qinyinbolan.blog.51cto.com/4359507/1211064 说明: 1.首先需要有多个域名,同时指向一个IP地址. 例如:域名:www.bbb.com, ...
- 前端面试:js闭包,为什么要使用闭包
要理解闭包,首先理解javascript特殊的变量作用域,变量的作用于无非就是两种:全局变量,局部变量. javascript语言的特殊处就是函数内部可以读取全局变量. 1.如何从外部读取局部变量? ...