题目描述

Bessie is playing a video game! In the game, the three letters 'A', 'B', and 'C' are the only valid buttons. Bessie may press the buttons in any order she likes; however, there are only N distinct combos possible (1 <= N <= 20). Combo i is represented as a string S_i which has a length between 1 and 15 and contains only the letters 'A', 'B', and 'C'.

Whenever Bessie presses a combination of letters that matches with a combo, she gets one point for the combo. Combos may overlap with each other or even finish at the same time! For example if N = 3 and the three possible combos are "ABA", "CB", and "ABACB", and Bessie presses "ABACB", she will end with 3 points. Bessie may score points for a single combo more than once.

Bessie of course wants to earn points as quickly as possible. If she presses exactly K buttons (1 <= K <= 1,000), what is the maximum number of points she can earn?

贝西在玩一款游戏,该游戏只有三个技能键 “A”“B”“C”可用,但这些键可用形成N种(1 <= N<= 20)特定的组合技。第i个组合技用一个长度为1到15的字符串S_i表示。

当贝西输入的一个字符序列和一个组合技匹配的时候,他将获得1分。特殊的,他输入的一个字符序列有可能同时和若干个组合技匹配,比如N=3时,3种组合技分别为"ABA", "CB", 和"ABACB",若贝西输入"ABACB",他将获得3分。

若贝西输入恰好K (1 <= K <= 1,000)个字符,他最多能获得多少分?

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: N and K.

  • Lines 2..N+1: Line i+1 contains only the string S_i, representing combo i.

输出格式:

  • Line 1: A single integer, the maximum number of points Bessie can obtain.

输入输出样例

输入样例#1: 
3 7
ABA
CB
ABACB
输出样例#1: 
4

说明

The optimal sequence of buttons in this case is ABACBCB, which gives 4 points--1 from ABA, 1 from ABACB, and 2 from CB.

最简单的AC自动机+DP了。。。。再不会的话AC自动机白学了。

#include<bits/stdc++.h>
#define ll long long
#define maxn 1005
using namespace std;
int ch[maxn][],n,m,k,ans=;
int root=,tot=,val[maxn];
int f[maxn],g[maxn][maxn];
char s[maxn]; inline int id(char c){
return c-'A';
} inline void ins(){
int len=strlen(s),now=root;
for(int i=;i<len;i++){
int c=id(s[i]);
if(!ch[now][c]) ch[now][c]=++tot;
now=ch[now][c];
}
val[now]=;
} inline void get_fail(){
queue<int> q;
for(int i=;i<;i++) if(ch[][i]){
q.push(ch[][i]);
} int r,v,x;
while(!q.empty()){
x=q.front(),q.pop();
for(int i=;i<;i++){
r=ch[x][i];
if(!r){
ch[x][i]=ch[f[x]][i];
continue;
} q.push(r);
f[r]=ch[f[x]][i];
val[r]+=val[f[r]];
}
}
} inline void dp(){
memset(g,-0x3f,sizeof(g));
g[][]=;
int to;
for(int i=;i<k;i++)
for(int j=;j<=tot;j++)
for(int u=;u<;u++){
to=ch[j][u];
g[i+][to]=max(g[i+][to],g[i][j]+val[to]);
} for(int i=;i<=tot;i++) ans=max(ans,g[k][i]);
} int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%s",s);
ins();
} get_fail();
dp(); printf("%d\n",ans);
return ;
}

洛谷 P3041 [USACO12JAN] Video Game Combos的更多相关文章

  1. 落谷P3041 [USACO12JAN]Video Game G

    题目链接 多模式匹配问题,先建 AC 自动机. 套路性的搞个 DP: \(f[i][j]\) 表示前 \(i\) 个字符,当前在 \(AC\) 自动机上的节点是 \(j\) 能匹配到的最多分. 初始化 ...

  2. 洛谷P3041 视频游戏的连击Video Game Combos [USACO12JAN] AC自动机+dp

    正解:AC自动机+dp 解题报告: 传送门! 算是个比较套路的AC自动机+dp趴,,, 显然就普普通通地设状态,普普通通地转移,大概就f[i][j]:长度为i匹配到j 唯一注意的是,要加上所有子串的贡 ...

  3. 【洛谷 P3041】 [USACO12JAN]视频游戏的连击Video Game Combos(AC自动机,dp)

    题目链接 手写一下AC自动机(我可没说我之前不是手写的) Trie上dp,每个点的贡献加上所有是他后缀的串的贡献,也就是这个点到根的fail链的和. #include <cstdio> # ...

  4. 洛谷P3043 [USACO12JAN]牛联盟Bovine Alliance

    P3043 [USACO12JAN]牛联盟Bovine Alliance 题目描述 Bessie and her bovine pals from nearby farms have finally ...

  5. 洛谷 P3040 [USACO12JAN]贝尔分享Bale Share

    P3040 [USACO12JAN]贝尔分享Bale Share 题目描述 Farmer John has just received a new shipment of N (1 <= N & ...

  6. [USACO12JAN]Video Game Combos

    AC自动机建立fail树后树上DP # include <stdio.h> # include <stdlib.h> # include <iostream> # ...

  7. 洛谷 P1561 [USACO12JAN]爬山Mountain Climbing

    传送门 题目大意: n头牛,上山时间为u(i),下山为d(i). 要求每一时刻最多只有一头牛上山,一头牛下山. 问每头牛都上下山后花费最少时间. 题解:贪心 推了推样例,发现上山时间一定,那找个下山最 ...

  8. 洛谷—— P1561 [USACO12JAN]爬山Mountain Climbing

    https://daniu.luogu.org/problemnew/show/P1561 题目描述 Farmer John has discovered that his cows produce ...

  9. 洛谷 P2614 计算器弹琴

    P2614 计算器弹琴 题目描述 总所周知,计算器可以拿来干很多它本不应该干的事情,比如写作文.(参看洛谷P2549) 小A发现了一个计算器的另一个隐藏功能——弹琴. http://www.bilib ...

随机推荐

  1. 移动端H5滚动穿透解决方案

    最近遇到一个很 巨恶心的问题  ios10下面 页面弹窗有滚动穿透问题 各种google 终于找到了答案,但是体验还不是很好,基本能忍受 废话不多说,上方法 最后终于想到一个处理方案,就是第一种方案的 ...

  2. Codeforces 937.B Vile Grasshoppers

    B. Vile Grasshoppers time limit per test 1 second memory limit per test 256 megabytes input standard ...

  3. Dilworth定理证明

    命题:偏序集能划分成的最少的全序集的个数与最大反链的元素个数相等. (离散数学结构第六版课本P245:把一个偏序集划分成具有全序的子集所需要的最少子集个数与元素在偏序下都是不可比的最大集合的基数之间有 ...

  4. fastjson解析服务端返回的数据

    1.配置依赖 //fastjson api 'com.alibaba:fastjson:1.2.44' 2.设计服务端返回的数据 {},{},{}]} 3.编写bean类,特别注意,要和服务端返回的类 ...

  5. eclipse更改web项目的WebContent目录

    在使用eclipse 中 , 相信大家比我更是轻车熟路了 ( 我平常一般用 Intellij idea 的 ), 下面讲解一下在eclipse web项目中 , 如何设置 webroot 目录指向问题 ...

  6. 51nod 1254 最大子段和 V2 ——单调栈

    N个整数组成的序列a[1],a[2],a[3],…,a[n],你可以对数组中的一对元素进行交换,并且交换后求a[1]至a[n]的最大子段和,所能得到的结果是所有交换中最大的.当所给的整数均为负数时和为 ...

  7. [BZOJ2243][SDOI2011]染色 解题报告|树链剖分

    Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“ ...

  8. C# MVC 页面面包屑以及相应的权限验证操作

    一.特性类 /// <summary> /// 访问权限控制属性. /// </summary> [AttributeUsage(AttributeTargets.Method ...

  9. ie6浏览器兼容性

    1.ie6双倍边距bug 块状元素设置float(左浮动或有浮动),并且设置margin值之后,第一个浮动的元素其左侧margin值为正常的2倍,如图,可以看到第一个元素的左侧边距于其他元素两两之间的 ...

  10. 应对ubuntu linux图形界面卡住的方法

    有的时候,我的ubuntu图形界面会卡住,当然这个时候你可以重新启动,不过最好的办法应该是结束这个桌面进程 那桌面卡住了怎么来结束桌面进程呢? 这时候就需要打开tty了 按下键盘ctrl+alt+f1 ...