深根半夜里研究C++的语法,在弄到关于函数的定义 这一部分时突然想写个试试,就拿比较熟悉的gcd来好了。

活这么久gcd一直是用辗转相除法(或者说欧几里得算法)得出的,根据《算法导论》第三版的中文页码P547给出的伪代码,很容易就得出C++的写法。

int gcd(int a,int b){
    if(b==0)
        return a;
    else
        return gcd(b,a % B);
}

However----

当a,b比较大的时候显得特别慢,所以出现了来自《九章算术》中的更相减损术来求gcd。(怕是活久见的实例。。。)

更相减损术的代码如下:

int gcd(int a,int b){
    if(a==b)
        return a;
    else
        if(a<b)
            return gcd(b-a,a);
        else
            return gcd(a-b,b);
}

  换句话说,其原理可以被称为“辗转相减法”【笑】。根据gcd(a,b)=gcd(|a-b|,min(a,b)),然后设定一下边界(即两个相等的数,其gcd值为本身),就有了。具体证明不知道【喂太草率了吧!!】,反正没问题可以用就是了。

But----

当|a-b|比较大的时候,很明显递归次数比较多,这不是想要的结果。再看一遍原文:

可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。

好了,【作为一名文科生恬不知耻地笑了】其实原文的目的是为了约分,“可半者半之”就是说能约2就约2,然后不能约2了再找gcd约分。

所以分类讨论一下:

  • 两数皆偶:美滋滋,易有gcd(a,b)=2×gcd(a÷2,b÷2)
  • 一奇一偶:只要想象一下类似约分一个分数like 9÷30,很显然有gcd(a,b)=gcd(a,b÷2),因为偶数除以2只是排除掉了一个因子2,而2又不可能是奇数的因子,所以可以得到这个等式成立
  • 两数皆奇:那怎么办呐?【笑】有小学奥数可知在整数范围内,奇数-奇数=偶数。所以跑一次“辗转相减法”以后,问题就转化为了上一种情况

所以ok,final版本的gcd就出来了,大半夜的写错了别打我啊。。。

int gcd(int a,int b){
    if(a==b)
        return a;
    else
        switch (check(a,b)){
            case 0:return 2*gcd(a/2,b/2);break;
            case 1:return gcd(a,b/2);break;
            case 2:return gcd(a/2,b);break;
            case 3:return gcd(abs(a-b),min(a,b));break;
        }
}

  有必要说明一下的是check函数检验的是将要参与gcd运算的两数的奇偶性,0就是同偶,1和2都是一奇一偶只不过位置有区别,3就是同奇的情况;abs是绝对值函数,min则返回两数间较小的一个。

关于两数的最大公约数gcd的更多相关文章

  1. C 语言实例 - 求两数的最大公约数

    C 语言实例 - 求两数的最大公约数 用户输入两个数,求这两个数的最大公约数. 实例 - 使用 for 和 if #include <stdio.h> int main() { int n ...

  2. js 两数的最大公约数

    function gcd(a,b){ if (b == 0){ return a; } var r = parseInt(a % b) ; return gcd(b, r);}gcd(12,5);

  3. C语言 求两数的最大公约数和最小公倍数

    //作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ #include<stdio.h> //最大公约数 int gys(int x,int ...

  4. 浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用

    一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约 ...

  5. 浅谈Stein算法求最大公约数(GCD)的原理及简单应用

    一.Stein算法过程及其简单证明 1.一般步骤: s1:当两数均为偶数时将其同时除以2至至少一数为奇数为止,记录除掉的所有公因数2的乘积k: s2:如果仍有一数为偶数,连续除以2直至该数为奇数为止: ...

  6. 用二进制方法求两个整数的最大公约数(GCD)

    二进制GCD算法基本原理是: 先用移位的方式对两个数除2,直到两个数不同时为偶数.然后将剩下的偶数(如果有的话)做同样的操作,这样做的原因是如果u和v中u为偶数,v为奇数,则有gcd(u,v)=gcd ...

  7. .net求两个数的最大公约数和最小公倍数

    最大公约数:指两个或多个整数共有约束中最大的一个. 最小公倍数:如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个. /// <s ...

  8. hdu 4630 查询[L,R]区间内任意两个数的最大公约数

    No Pain No Game Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. K:求取两个数的最大公约数的两个算法

    相关介绍:  最大公因数,也称最大公约数.最大公因子,指两个或多个整数共有约数中最大的一个.a,b的最大公约数记为gcd(a,b).同样的,a,b,c的最大公约数记为gcd(a,b,c),多个整数的最 ...

随机推荐

  1. 洛谷P4591 [TJOI2018]碱基序列 【KMP + dp】

    题目链接 洛谷P4591 题解 设\(f[i][j]\)表示前\(i\)个串匹配到位置\(j\)的方案数,匹配一下第\(i\)个串进行转移即可 本来写了\(hash\),发现没过,又写了一个\(KMP ...

  2. 微信小程序使用Socket

    首先,一个小程序同时只能有一个WebSocket连接,如果当前已经存在一个WebSocket连接,会关闭当前连接,并重新建立一个连接. 其次,如果使用了appID,协议必须是 wss://... 最近 ...

  3. Linux上 Can't connect to X11 window server using XX as the value of the DISPLAY 错误解决方法

    在Linux上运行需要图形界面的程序时出现如下错误提示: No protocol specified Exception in thread "main" java.awt.AWT ...

  4. Spring源码解析-AOP简单分析

    AOP称为面向切面编程,在程序开发中主要用来解决一些系统层面上的问题,比如日志,事务,权限等等,不需要去修改业务相关的代码. 对于这部分内容,同样采用一个简单的例子和源码来说明. 接口 public ...

  5. SCOI2005 互不侵犯 [状压dp]

    题目传送门 题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数 看到题目,是不是一下子就想到了玉米田那道题,如 ...

  6. 牛客多校对抗第6场 A Singing Contest

    [20分]标题:A.Singing Contest | 时间限制:1秒 | 内存限制:256MJigglypuff is holding a singing contest. There are 2n ...

  7. Vue2.0关于生命周期和钩子函数

    Vue生命周期简介:   Vue1.0+和Vue2.0在生命周期钩子上的区别还是很大的,如下:   代码验证: <!DOCTYPE html> <html> <head& ...

  8. 利用vue-cli创建Vue项目

    1.安装node.js:Node.js安装包及源码下载地址为:https://nodejs.org/en/download/. 配置参考:http://www.runoob.com/nodejs/no ...

  9. 动态规划&字符串:最长公共子串

    还是直接上转移方程: 动规只能解决O(n^2)的最长公共子串问题 使用后缀数组或者SAM可以高效地解决这个问题 所以,对于这个问题,动规的代码就不给出了 直接给出SAM的实现,也为以后学习SAM打下一 ...

  10. asp单页面301跳转

    <% Response.Status="301 Moved Permanently"Response.AddHeader "Location", &quo ...