Description

定义二元运算 opt 满足

现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问。每次询问给定一个数字 c

你需要求出有多少对 (i, j) 使得 a_i opt b_j=c 。

Input

第一行是一个整数 T (1≤T≤10) ,表示测试数据的组数。

对于每组测试数据:

第一行是三个整数 n,m,q (1≤n,m,q≤50000) 。

第二行是 n 个整数,表示 a_1,a_2,?,a_n (0≤a_1,a_2,?,a_n≤50000) 。

第三行是 m 个整数,表示 b_1,b_2,?,b_m (0≤b_1,b_2,?,b_m≤50000) 。

第四行是 q 个整数,第 i 个整数 c_i (0≤c_i≤100000) 表示第 i 次查询的数。

Output

对于每次查询,输出一行,包含一个整数,表示满足条件的 (i, j) 对的个数。

Sample Input

2

2 1 5

1 3

2

1 2 3 4 5

2 2 5

1 3

2 4

1 2 3 4 5

Sample Output

1

0

1

0

0

1

0

1

0

1

Sol

首先一眼看上去有点像FFT,但是由于值域的限制我们不能直接做,考虑按权值分治,每次把A中小于mid的和B中大于mid的进行FFT,统计答案的时候记得加上l和mid+1,再把B反转,然后把A中大于mid的和B中小于mid的进行FFT,统计答案的时候记得右移一位。

细节:分治的时候len和memset的范围一定要按照当前区间长度来,否则T飞。

Code

#include <bits/stdc++.h>
#define pi acos(-1.0)
using namespace std;
int A[50005],B[50005],T,mx,x,n,m,q,len,i,j,k;long long ans[100005];
struct cp
{
double x,y;
cp(double x=0.0,double y=0.0):x(x),y(y){}
friend cp operator+(cp a,cp b){return cp(a.x+b.x,a.y+b.y);}
friend cp operator-(cp a,cp b){return cp(a.x-b.x,a.y-b.y);}
friend cp operator*(cp a,cp b){return cp(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
}C[131073],D[131073],w,wn,t;
void fft(cp *a,int n,int op)
{
for(i=k=0;i<n;i++){if(i>k) swap(a[i],a[k]);for(j=(n>>1);(k^=j)<j;j>>=1);}
for(k=2,wn=cp(cos(2*pi*op/k),sin(2*pi*op/k));k<=n;k<<=1,wn=cp(cos(2*pi*op/k),sin(2*pi*op/k)))
for(i=0,w=cp(1,0);i<n;i+=k,w=cp(1,0)) for(j=0;j<(k>>1);j++,w=w*wn)
t=a[i+j+(k>>1)]*w,a[i+j+(k>>1)]=a[i+j]-t,a[i+j]=a[i+j]+t;
if(op==-1) for(int i=0;i<n;i++) a[i].x/=n;
}
void solve(int l,int r)
{
if(l==r){ans[0]+=1ll*A[l]*B[l];return;}
int mid=(l+r)>>1;for(len=1;len<r-l+1;len<<=1);
memset(C,0,sizeof(cp)*len);memset(D,0,sizeof(cp)*len);
for(int i=l;i<=mid;i++) C[i-l].x=A[i];
for(int i=mid+1;i<=r;i++) D[i-mid-1].x=B[i];
fft(C,len,1);fft(D,len,1);
for(int i=0;i<len;i++) C[i]=C[i]*D[i];fft(C,len,-1);
for(int i=0;i<len;i++) ans[i+l+mid+1]+=1ll*(C[i].x+0.1);
memset(C,0,sizeof(cp)*len);memset(D,0,sizeof(cp)*len);
for(int i=mid+1;i<=r;i++) C[i-mid-1].x=A[i];
for(int i=l;i<=mid;i++) D[mid-i].x=B[i];
fft(C,len,1);fft(D,len,1);
for(int i=0;i<len;i++) C[i]=C[i]*D[i];fft(C,len,-1);
for(int i=0;i<len;i++) ans[i+1]+=1ll*(C[i].x+0.1);
solve(l,mid);solve(mid+1,r);
}
int main()
{
for(scanf("%d",&T);T--;)
{
memset(A,0,sizeof(A));memset(B,0,sizeof(B));memset(ans,0,sizeof(ans));
scanf("%d%d%d",&n,&m,&q);mx=0;
for(int i=1;i<=n;i++) scanf("%d",&x),A[x]++,mx=max(mx,x);
for(int i=1;i<=m;i++) scanf("%d",&x),B[x]++,mx=max(mx,x);
for(solve(0,mx);q--;) scanf("%d",&x),printf("%lld\n",ans[x]);
}
}

【bzoj4836】二元运算 分治FFT的更多相关文章

  1. [BZOJ4836]二元运算(分治FFT)

    4836: [Lydsy1704月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 578  Solved: 202[Submit][Stat ...

  2. 【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT

    题目描述 定义二元运算 opt 满足   现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c  你需要求出有多少对 (i, j) 使得 a_ ...

  3. bzoj 4836 [Lydsy1704月赛]二元运算 分治FFT+生成函数

    [Lydsy1704月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 577  Solved: 201[Submit][Status][Di ...

  4. bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT

    4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MB Description 定义二元运算 opt 满足   现在给定一 ...

  5. BZOJ 4836: [Lydsy1704月赛]二元运算 分治FFT

    Code: #include<bits/stdc++.h> #define ll long long #define maxn 500000 #define setIO(s) freope ...

  6. BZOJ4836 [Lydsy1704月赛]二元运算 分治 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8830036.html 题目传送门 - BZOJ4836 题意 定义二元运算$opt$满足 $$x\ opt\ y ...

  7. BZOJ4836: [Lydsy1704月赛]二元运算【分治FFT】【卡常(没卡过)】

    Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...

  8. BNUOJ 51279[组队活动 Large](cdq分治+FFT)

    传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...

  9. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

随机推荐

  1. js操作一般文件和csv文件

    js操作一般文件和csv文件 将文本文件读成字符串 <input type="file" id="upload"> document.getElem ...

  2. Eclipse使用总结——使用Eclipse打包带源码的jar包

    平时开发中,我们喜欢将一些类打包成jar包,然后在别的项目中继续使用,不过由于看不到jar包里面的类的源码了,所以也就无法调试,要想调试,那么就只能通过关联源代码的形式,这样或多或少也有一些不方便,今 ...

  3. Java微信公众平台开发(一)--接入微信公众平台

    转自:http://www.cuiyongzhi.com/post/38.html (一)接入流程解析 在我们的开发过程中无论如何最好的参考工具当然是我们的官方文档了:http://mp.weixin ...

  4. Stall Reservations(贪心+优先队列)

    Description Oh those picky N (1 <= N <= 50,000) cows! They are so picky that each one will onl ...

  5. Ubuntu下&nbsp;Nfs服务器安装

    Ubuntu Nfs服务器安装 nfs服务器在嵌入式开发中非常常用,可以实现主机和开发板共享文件.     1.安装软件包     sudo apt-get install nfs-common nf ...

  6. Uboot详细解析2

    1.第二阶段的主线函数位于u-boot-2010.06/arch/arm/lib/board.c. 第二阶段的功能: <1> 初始化本阶段要使用到的硬件设备. 设置时钟.初始化串口. bo ...

  7. Unity调试设置

    [Unity调试设置] 1.Mac中,"Unity"->"Preferences...". Windows中,"Edit"->& ...

  8. ubuntu 12.04 ubuntu System program problem detected 解决方法

    1. ubuntu System program problem detected本人操作系统是ubuntu12.04,不知道是系统出了问题还是装的软件有问题,每次开机都出现:System progr ...

  9. Docker学习之路(一)

    容器简介 管理程序虚拟化(hypervisor virtualization, HV)是通过中间虚拟运行于物理硬件之上.而容器是直接运行在操作系统内核之上用户空间.因此,容器虚拟化运行也成为“操作系统 ...

  10. Luogu 4784 [BalticOI 2016 Day2]城市

    斯坦纳树复习,我暑假的时候好像写过[JLOI2015]管道连接来着. 设$f_{i, s}$表示以$i$为根,$k$个重要点的连通状态为$s$,($0$代表没有连进最小生成树里面去,$1$代表连进了最 ...