Grandpa Giuseppe won a professional pizza cutter, the kind of type reel and, to celebrate, baked a rectangle pizza to his grandchildren! He always sliced his pizzas into pieces by making cuts over continuous lines, not necessarily rectilinear, of two types: some begin at the left edge of the pizza, follow continuously to the right and end up in the right edge; other start on lower edge, follow continuously up and end up on the top edge. But Grandpa Giuseppe always followed a property: two cuts of the same type would never intersect. Here is an example with 4 cuts, two of each type, in the left part of the figure, which divide the pizza in 9 pieces.

It turns out that Grandpa Giuseppe simply loves geometry, topology, combinatorics and stuff; so, he decided to show to his grandchildren who could get more pieces with the same number of cuts if cross cuts of the same type were allowed. The right part of the figure shows, for example, that if the two cuts of the type that go from left to right could intercept, the pizza would be divided into 10 pieces.

Grandpa Giuseppe ruled out the property, but will not make random cuts. In addition to being one of the two types, they will comply with the following restrictions:

  • Two cuts have at most one intersection point and, if they have, it is because the cuts cross each other at that point;
  • Three cuts do not intersect in a single point;
  • Two cuts do not intersect at the border of the pizza;
  • A cut does not intercept a pizza corner.

Given the start and end points of each cut, your program should compute the number of resulting pieces from the cuts of Grandfather Giuseppe.

Input

The first line of the input contains two integers X

and Y, (1≤X,Y≤109), representing the coordinates (X,Y) of the upper-right corner of the pizza. The lower left corner has always coordinates (0,0). The second line contains two integers H and V, (1≤H,V≤105),
indicating, respectively, the number of cuts ranging from left to right
and the number of cuts ranging from bottom to top. Each of the
following lines H contains two integers Y1 and Y2, a cut that intercepts the left side with y-coordinate Y1 and the right side at y-coordinate Y2. Each of the following V lines contains two integers X1 and X2, a cut that intercept the bottom side at x-coordinate X1 and the upper side at x-coordinate X2

.

Examples

Input
3 4
3 2
1 2
2 1
3 3
1 1
2 2
Output
13
Input
5 5
3 3
2 1
3 2
1 3
3 4
4 3
2 2
Output
19
Input
10000 10000
1 2
321 3455
10 2347
543 8765
Output
6
原本应为(h+1)*(v+1);
每多一个交点,就会+1;
那么我们对于一个端点排完序后,求另一个端点的逆序对即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 1000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int X, Y;
int H, V;
int c[maxn];
int Tot;
void add(int x) {
while (x <= maxn) {
c[x]++; x += x & -x;
}
} int query(int x) {
int ans = 0;
while (x > 0) {
ans += c[x]; x -= x & -x;
}
return ans;
}
ll ans;
struct node {
int l, r;
}a[maxn];
bool cmp(node a, node b) {
return a.l < b.l;
}
int tmpb[maxn];
int tmpc[maxn];
int main()
{
// ios::sync_with_stdio(0);
X = rd(); Y = rd();
H = rd(); V = rd();
ans = 1ll * (H + 1ll)*(V + 1ll);
vector<int>vc; int ct = 0;
for (int i = 1; i <= H; i++) {
a[i].l = rd(); a[i].r = rd();
tmpb[++ct] = a[i].r;
}
sort(tmpb + 1, tmpb + 1 + ct);
sort(a + 1, a + 1 + H, cmp);
for (int i = 1; i <= H; i++) {
tmpc[i] = lower_bound(tmpb + 1, tmpb + 1 + ct, a[i].r) - tmpb;
}
for (int i = 1; i <= H; i++) {
add(tmpc[i]);
ans += (ll)(i - query(lower_bound(tmpb + 1, tmpb + 1 + ct, a[i].r + 1) - tmpb - 1));
}
ms(c); ms(tmpb); ms(tmpc);
ct = 0;
for (int i = 1; i <= V; i++) {
a[i].l = rd(); a[i].r = rd();
tmpb[++ct] = a[i].r;
}
sort(tmpb + 1, tmpb + 1 + ct);
sort(a + 1, a + 1 + V, cmp);
for (int i = 1; i <= V; i++) {
tmpc[i] = lower_bound(tmpb + 1, tmpb + 1 + ct, a[i].r) - tmpb;
}
for (int i = 1; i <= V; i++) {
add(tmpc[i]);
ans += (ll)(i - query(lower_bound(tmpb + 1, tmpb + 1 + ct, a[i].r + 1) - tmpb - 1));
}
cout << (ll)ans << endl;
return 0;
}

Gym - 101908C 树状数组 逆序对的更多相关文章

  1. [树状数组+逆序对][NOIP2013]火柴排队

    火柴排队 题目描述 涵涵有两盒火柴,每盒装有n根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑ (ai-bi)2,i=1,2,3,. ...

  2. hdu 5497 Inversion 树状数组 逆序对,单点修改

    Inversion Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5497 ...

  3. Codevs 3286 火柴排队 2013年NOIP全国联赛提高组 树状数组,逆序对

    题目:http://codevs.cn/problem/3286/ 3286 火柴排队  2013年NOIP全国联赛提高组  时间限制: 1 s   空间限制: 128000 KB   题目等级 : ...

  4. Bzoj 2789: [Poi2012]Letters 树状数组,逆序对

    2789: [Poi2012]Letters Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 278  Solved: 185[Submit][Stat ...

  5. Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2886  Solved: 924[Submit][Stat ...

  6. Bzoj 3289: Mato的文件管理 莫队,树状数组,逆序对,离散化,分块

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1539  Solved: 665[Submit][Status][Di ...

  7. Poj 2299 - Ultra-QuickSort 离散化,树状数组,逆序对

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 52306   Accepted: 19194 ...

  8. hdu 2838 Cow Sorting (树状数组+逆序对)

    题目 题意:给你N个排列不规则的数,任务是把它从小到大排好,每次只能交换相邻两个数,交换一次的代价为两数之和,求最小代价 拿到这道题,我根本看不出这道题和树状数组有半毛钱关系,博客之,全说用树状数组做 ...

  9. 【树状数组逆序对】USACO.2011JAN-Above the median

    [题意] 给出一串数字,问中位数大于等于X的连续子串有几个.(这里如果有偶数个数,定义为偏大的那一个而非中间取平均) [思路] 下面的数据规模也小于原题,所以要改成__int64才行.没找到测试数据, ...

随机推荐

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 3_Linear Algebra Review

    Lecture3   Linear Algebra Review 线性代数回顾 3.1 矩阵和向量3.2 加法和标量乘法3.3 矩阵向量乘法3.4 矩阵乘法3.5 矩阵乘法的性质3.6 逆.转置 3. ...

  2. 强大的HTML5开发工具推荐

    HTML5被看做是Web开发者创建流行Web应用的利器,增加了对视频和Canvas 2D的支持.HTML5的诞生还让人们重新审视浏览器专用多媒体插件的未来,如Adobe的Flash和微软的Silver ...

  3. 配置springboot在访问404时自定义返回结果以及统一异常处理

    在搭建项目框架的时候用的是springboot,想统一处理异常,但是发现404的错误总是捕捉不到,总是返回的是springBoot自带的错误结果信息. 如下是springBoot自带的错误结果信息: ...

  4. IFC文件解析

    什么是IFC? EXPRESS语言与IFC体系 一.IFC 1.IFC简介 IFC是一个数据交换标准, 用于不同系统交换和共享数据.当需要多个软件协同完成任务时, 不同系统之间就会出现数据交换和共享的 ...

  5. mysql GROUP_CONCAT 可以将分组的字段进行拼接处理.

    GROUP_CONCAT 可以将分组的字段进行拼接处理. SELECT g.id, g.merchant_id, g. NAME, g.introduction, g.cover_pic, g.pla ...

  6. ROS导航包的介绍

    博客转载自:https://blog.csdn.net/handsome_for_kill/article/details/53130707#t3 ROS导航包的应用 利用ROS Navigation ...

  7. MCMC 破译密码 http://mlwhiz.com/blog/2015/08/21/MCMC_Algorithms_Cryptography/

    # AIM: To Decrypt a text using MCMC approach. i.e. find decryption key which we will call cipher fro ...

  8. .net中对HTTP请求的两种请求:Get和Post的操作

    .net中对HTTP请求的简单操作总结 第一部分,HTTP协议的简单了解 一.           什么是HTTP协议 超文本传输协议 (HTTP-Hypertext transfer protoco ...

  9. 黑盒测试实践--Day3 11.27

    黑盒测试实践--Day3 今天完成任务情况: 收到小组紧急通知,作业要求更新了.组长召集大家在下午课后去开个短会,会议信息如下: 时间:11.27 晚上5:30 地点:东九楼501 会议内容: 学习了 ...

  10. Python基础入门-While循环

    讲完了for循环我们继续来看第二个循环,那就是while循环,while循环和for循环虽然都是循环,但是有着本质的不同.我们先来看下她们之间的区别和联系: While循环和for循环区别: 1.fo ...