Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5949   Accepted: 2053   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part jDi,k— output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.
题意:每台电脑有P部分,可以通过不同的机器来进行加工。 有N台机器,每台机器用2 P +1 个整数来描述:Qi Si,1 Si,2 ... Si,p Di,1 Di,2. .. Di,p,其中Qi 指定了机器的性能,表示每小时加工的电脑数量。 Si,j 为第j 部分的输入规格,0表示该部分不能被加工过,1表示该部分必须被加工过,2表示都可以。 Di,k 为第k 部分的输出规格。 0表示经过该机器不加工,1表示该机器加工该部分。 1≤P≤10,1≤N≤50,1≤Qi≤10000。

注意:本题Sample I/O这段英文不用输入输出

Sample input:

P  N (N台机器,每台机器有P部分)

接着输入N行,其实每行都是一个结点的信息

每一行的格式为 一个Q  P个S  P个D

其中Q为当前结点的容量,S都是当前结点的输入规格,D都是输出规格

Sample output:

第一行的两个数字分别表示:最大流的值,流量发生变化的边数M(和s还有t关联的边不在其内,那些不属于原有的边,是附加边)

接下来有M行,每一行都有三个数字,A B W

A B为流量发生变化的边的端点,W为流量的变化值(每条边初始流量为0,最终流量就是找到最大流时的流量)

若图不连通,则输出0 0

 #include <iostream>
#include<stdio.h>
#include<queue>
#include<string.h>
using namespace std;
int map[][],mapbk[][];
int input[][];
int path[];
int flow[];
int change[][];
int start,end;
int p,n;
queue<int> q;
int BFS(){
memset(path,-,sizeof(path));
while(!q.empty()) q.pop();
q.push(start);
flow[start]=;
path[start]=;
while(!q.empty()){
int v=q.front();
if(v==end)
break;
q.pop();
for(int i=;i<=end;i++){
if(path[i]==- && map[v][i]!= && start!=i){
flow[i]=flow[v]<map[v][i]?flow[v]:map[v][i];
path[i]=v;
q.push(i);
}
} }
if(path[end]==-) return -;
else
return flow[end];
}
int Edmonds_Karp(){
int step,max_flow=,now,pre;
while(){
step=BFS();
if(step==-)
break;
max_flow+=step;
now=end;
while(now!=start){
pre=path[now];
map[pre][now]-=step;
map[now][pre]+=step;
now=pre;
} }
return max_flow;
}
int main() {
while(cin>>p>>n){
memset(map,,sizeof(map));
memset(input,,sizeof(input));
//gets(str);
for(int i=;i<=n;i++){
for(int j=;j<*p+;j++){
int t;
cin>>t;
input[i][j]=t;
}
}
//getchar();
// gets(str);
for(int i=;i<=n;i++){
int flag=;
for(int j=;j<p+;j++){
if(input[i][j]==)
flag=;
}
if(flag!=){
map[][i]=input[i][];
}
flag=;
for(int j=p+;j<*p+;j++){
if(input[i][j]==)
flag=;
}
if(flag!=)
map[i][n+]=input[i][];
flag=;
for(int j=;j<=n;j++){
if(i!=j){
for(int k=;k<p+;k++){
if(i!=j&&input[i][p+k]+input[j][k]==)
flag=;
}
if(flag!=)
map[i][j]=input[i][]<input[j][]?input[i][]:input[j][];
flag=;
}
} }
start=;
end=n+;
memcpy(mapbk,map,sizeof(map));
int result=Edmonds_Karp(); int count=;
for(int i=;i<n+;i++){
for(int j=;j<n+;j++){
if(map[i][j]<mapbk[i][j]){
change[count][]=i;
change[count][]=j;
change[count][]=mapbk[i][j]-map[i][j];
count++;
}
}
}
cout<<result<<' '<<count<<endl;
for(int i=;i<count;i++){
cout<<change[i][]<<' '<<change[i][]<<' '<<change[i][]<<endl;
}
}
return ;
}

ACM Computer Factory - poj 3436 (最大流)的更多相关文章

  1. A - ACM Computer Factory POJ - 3436 网络流

    A - ACM Computer Factory POJ - 3436 As you know, all the computers used for ACM contests must be ide ...

  2. A - ACM Computer Factory - poj 3436(最大流)

    题意:有一个ACM工厂会生产一些电脑,在这个工厂里面有一些生产线,分别生产不同的零件,不过他们生产的电脑可能是一体机,所以只能一些零件加工后别的生产线才可以继续加工,比如产品A在生产线1号加工后继续前 ...

  3. (网络流)ACM Computer Factory --POJ --3436

    链接: http://poj.org/problem?id=3436 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#probl ...

  4. ACM Computer Factory POJ - 3436 网络流拆点+路径还原

    http://poj.org/problem?id=3436 每台电脑有$p$个组成部分,有$n$个工厂加工电脑. 每个工厂对于进入工厂的半成品的每个组成部分都有要求,由$p$个数字描述,0代表这个部 ...

  5. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

  6. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  7. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  8. POJ 3436:ACM Computer Factory 网络流

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6247   Accepted: 2 ...

  9. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

随机推荐

  1. 查看Java代码对应的汇编指令又一利器,JITWatch 转

    http://www.tuicool.com/articles/IRrIRb3 时间 2015-05-13 08:00:00  Liuxinglanyue's Blog 原文  http://java ...

  2. 取代Promise的Generator生成器函数

    接触过Ajax请求的会遇到过异步调用的问题,为了保证调用顺序的正确性,一般我们会在回调函数中调用,也有用到一些新的解决方案如Promise相关的技术. 在异步编程中,还有一种常用的解决方案,它就是Ge ...

  3. VBA数组

    基础用法,这篇写的不错:https://www.cnblogs.com/wuzhiblog/p/7137578.html

  4. Sql-简单分页

    create proc proc_searchuser( @username varchar(12), @page int=1, @pagesize int=3, @totalcount int ou ...

  5. ylbtech-LanguageSamples-ConditionalMethods(条件方法)

    ylbtech-Microsoft-CSharpSamples:ylbtech-LanguageSamples-ConditionalMethods(条件方法) 1.A,示例(Sample) 返回顶部 ...

  6. MacBook安装office

    已更新至最新版Microsoft Office 2016 v16.13.18052304,完美支持macOS High Sierra 10.13.4,破解方法很简单,先安装Microsoft_Offi ...

  7. Less 简介

    什么是LESSCSS LESSCSS是一种动态样式语言,属于CSS预处理语言的一种,它使用类似CSS的语法,为CSS的赋予了动态语言的特性,如变量.继承.运算.函数等,更方便CSS的编写和维护. LE ...

  8. javascript快速入门23--XHR—XMLHttpRequest对象

    创建XMLHttpRequest对象 与之前众多DOM操作一样,创建XHR对象也具有兼容性问题:IE6及之前的版本使用ActiveXObject,IE7之后及其它浏览器使用XMLHttpRequest ...

  9. oracle 10g函数大全--聚合函数

    AVG([distinct|all]x) [功能]统计数据表选中行x列的平均值. [参数]all表示对所有的值求平均值,distinct只对不同的值求平均值,默认为all 如果有参数distinct或 ...

  10. POJ 2386 Lake Counting 搜索题解

    简单的深度搜索就能够了,看见有人说什么使用并查集,那简直是大算法小用了. 由于能够深搜而不用回溯.故此效率就是O(N*M)了. 技巧就是添加一个标志P,每次搜索到池塘,即有W字母,那么就觉得搜索到一个 ...