Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5949   Accepted: 2053   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part jDi,k— output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.
题意:每台电脑有P部分,可以通过不同的机器来进行加工。 有N台机器,每台机器用2 P +1 个整数来描述:Qi Si,1 Si,2 ... Si,p Di,1 Di,2. .. Di,p,其中Qi 指定了机器的性能,表示每小时加工的电脑数量。 Si,j 为第j 部分的输入规格,0表示该部分不能被加工过,1表示该部分必须被加工过,2表示都可以。 Di,k 为第k 部分的输出规格。 0表示经过该机器不加工,1表示该机器加工该部分。 1≤P≤10,1≤N≤50,1≤Qi≤10000。

注意:本题Sample I/O这段英文不用输入输出

Sample input:

P  N (N台机器,每台机器有P部分)

接着输入N行,其实每行都是一个结点的信息

每一行的格式为 一个Q  P个S  P个D

其中Q为当前结点的容量,S都是当前结点的输入规格,D都是输出规格

Sample output:

第一行的两个数字分别表示:最大流的值,流量发生变化的边数M(和s还有t关联的边不在其内,那些不属于原有的边,是附加边)

接下来有M行,每一行都有三个数字,A B W

A B为流量发生变化的边的端点,W为流量的变化值(每条边初始流量为0,最终流量就是找到最大流时的流量)

若图不连通,则输出0 0

 #include <iostream>
#include<stdio.h>
#include<queue>
#include<string.h>
using namespace std;
int map[][],mapbk[][];
int input[][];
int path[];
int flow[];
int change[][];
int start,end;
int p,n;
queue<int> q;
int BFS(){
memset(path,-,sizeof(path));
while(!q.empty()) q.pop();
q.push(start);
flow[start]=;
path[start]=;
while(!q.empty()){
int v=q.front();
if(v==end)
break;
q.pop();
for(int i=;i<=end;i++){
if(path[i]==- && map[v][i]!= && start!=i){
flow[i]=flow[v]<map[v][i]?flow[v]:map[v][i];
path[i]=v;
q.push(i);
}
} }
if(path[end]==-) return -;
else
return flow[end];
}
int Edmonds_Karp(){
int step,max_flow=,now,pre;
while(){
step=BFS();
if(step==-)
break;
max_flow+=step;
now=end;
while(now!=start){
pre=path[now];
map[pre][now]-=step;
map[now][pre]+=step;
now=pre;
} }
return max_flow;
}
int main() {
while(cin>>p>>n){
memset(map,,sizeof(map));
memset(input,,sizeof(input));
//gets(str);
for(int i=;i<=n;i++){
for(int j=;j<*p+;j++){
int t;
cin>>t;
input[i][j]=t;
}
}
//getchar();
// gets(str);
for(int i=;i<=n;i++){
int flag=;
for(int j=;j<p+;j++){
if(input[i][j]==)
flag=;
}
if(flag!=){
map[][i]=input[i][];
}
flag=;
for(int j=p+;j<*p+;j++){
if(input[i][j]==)
flag=;
}
if(flag!=)
map[i][n+]=input[i][];
flag=;
for(int j=;j<=n;j++){
if(i!=j){
for(int k=;k<p+;k++){
if(i!=j&&input[i][p+k]+input[j][k]==)
flag=;
}
if(flag!=)
map[i][j]=input[i][]<input[j][]?input[i][]:input[j][];
flag=;
}
} }
start=;
end=n+;
memcpy(mapbk,map,sizeof(map));
int result=Edmonds_Karp(); int count=;
for(int i=;i<n+;i++){
for(int j=;j<n+;j++){
if(map[i][j]<mapbk[i][j]){
change[count][]=i;
change[count][]=j;
change[count][]=mapbk[i][j]-map[i][j];
count++;
}
}
}
cout<<result<<' '<<count<<endl;
for(int i=;i<count;i++){
cout<<change[i][]<<' '<<change[i][]<<' '<<change[i][]<<endl;
}
}
return ;
}

ACM Computer Factory - poj 3436 (最大流)的更多相关文章

  1. A - ACM Computer Factory POJ - 3436 网络流

    A - ACM Computer Factory POJ - 3436 As you know, all the computers used for ACM contests must be ide ...

  2. A - ACM Computer Factory - poj 3436(最大流)

    题意:有一个ACM工厂会生产一些电脑,在这个工厂里面有一些生产线,分别生产不同的零件,不过他们生产的电脑可能是一体机,所以只能一些零件加工后别的生产线才可以继续加工,比如产品A在生产线1号加工后继续前 ...

  3. (网络流)ACM Computer Factory --POJ --3436

    链接: http://poj.org/problem?id=3436 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82835#probl ...

  4. ACM Computer Factory POJ - 3436 网络流拆点+路径还原

    http://poj.org/problem?id=3436 每台电脑有$p$个组成部分,有$n$个工厂加工电脑. 每个工厂对于进入工厂的半成品的每个组成部分都有要求,由$p$个数字描述,0代表这个部 ...

  5. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

  6. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  7. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  8. POJ 3436:ACM Computer Factory 网络流

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6247   Accepted: 2 ...

  9. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

随机推荐

  1. Android 架构 3.实现

    以实现最小化可用产品(MVP)的目标,用最简单的方式来搭建架构和实现代码.IDE采用Android Studio,Demo实现的功能为用户注册.登录和展示一个券列表,数据采用我们现有项目的测试数据,接 ...

  2. MathType输入矩阵或者向量的注意事项

    如图A区域是换行搞得,BC是插入矩阵,AC明显看着不一样,就是说行间不要使用换行,列间隔不要用空格(ctrl+shift+space),直接插入矩阵,向量就是矩阵的行或者列数目是1. 还有就是需要注意 ...

  3. Bootstrap标签Tabs

    <!--标签--> <ul class="nav nav-tabs" role="tablist"> <li class=&quo ...

  4. WebApi_HelpPage

        HelpPage是描述WebApi接口信息的Web页,根据项目编译的Xml文件生成,包括接口的Router地址.请求参数.请求参数示例.响应参数.响应参数示例等,可方便调用方快速了解接口信息 ...

  5. 性能测试之工具对比-ngrinder jmeter loadunner及ngrinder安装使用方法

    参考:https://blog.csdn.net/bear_w/article/details/78366078

  6. adb logcat通过包名过滤(dos命令find后跟变量)

    adb命令中似乎没有直接通过报名来过滤的功能,可是能够通过过滤进程的pid来过滤该应用的日志 过滤条件:该app在执行 实现原理: 1.获取该app执行时的pid 2.通过find命令,过滤pid的日 ...

  7. Windows数据备份软件Deltacopy-数据备份与还原

    官方网站:http://www.aboutmyip.com/AboutMyXApp/DeltaCopy.jsp System Requirements XP, 2000, 2003, 2008, Vi ...

  8. Can we say objects have attributes, states and behaviors?

    15down votefavorite 3 I was reading through Oracle's introduction to OOP concepts and I came across ...

  9. hbase shell删除键不听使唤

    用Xshell登陆linux主机后,在hbase shell下死活不能使用backspace和delete删除误输的指令,只得不停退出,重登,仔细输..又错了,再退出,再登,仔细输...又错了...又 ...

  10. Foundation框架 - NSNumber类

    NSNumber类 NSFormatter #import <Foundation/Foundation.h> int main(int argc, const char * argv[] ...