基本数学概念

real number(实数):是有理数无理数的总称

有理数:可以表达为两个整数比的数(a/b, b!=0)

无理数是指除有理数以外的实数

imply -- 推导出

不需要 A 能推导出 B,而只要 A, B 都是正确的就可以?

phi implies psi 与 phi, psi 是否有关联无关。计算机并不需要理解 phi, psi 的意思,不需要知道 phi, psi 是否是正确的,它们只需要知道 phi implies psi 是否是正确的。

那么如何推导出剩下的两个?

通过 phi 不能推导出 psi 来推导

phi 不能推导出 psi 为 False,则 phi 能推导出 psi 则为 True

推导出 phi, psi 的换算关系的一个例子

equivalence

phi = psi means "phi implies psi and psi implies phi"

Some expressions about phi implies psi

要注意 only if 的用户。

A. I can join a bicycle competition only if I have a bicycle

B. If I have a bicycle, then I can join a bicycle competition

A != B

means:  "join a bicycle competition" implies "have a bicycle"

使用上面的术语表示相等

Assignment4--10

证明 a, b, c

习题

P  Q  ¬P  ¬Q  ¬P∨Q  P∨Q   P⇒Q  ¬(P∨Q)   ¬P∧¬Q

T  T  F    F       T    T    T    F      F

T  F  F    T     F    T    F    F      F

F  T  T    F    T    T    T    F      F

F  F  T    T    T    F    T    T      T

¬P∨¬Q  P∨¬Q  ¬(P∨¬Q)

F      T    F

T      T    F

T      F    T

T      T    F

¬P∨¬Q  P∧Q  ¬(P∧Q)

F      T    F

T      F    T

T      F    T

T      F    T

¬(P⇒(Q∧R)) , ¬(P⇒Q)∨¬(P⇒R)

¬(P⇒(Q∧R))

P  Q  R    Q^R  P⇒(Q∧R)  ¬(P⇒(Q∧R))

T  T  T    T    T      F

T  T  F    F    F      T  

T  F  T    F    F      T

T  F  F    F    F      T

F  T  T    T    T      F 

F  T  F    F    T      F

F  F  T    F    T      F

F  F  F    F    T      F

¬(P⇒Q)∨¬(P⇒R)

P⇒Q  ¬(P⇒Q)  P⇒R  ¬(P⇒R)  ¬(P⇒Q)∨¬(P⇒R)

T    F      T    F      F

T    F      F    T      T

F    T      T    F      T

F    T      F    T      T

T    F      T    F      F

T    F      T    F      F

T    F      T    F      F

T    F      T    F      F

P^Q   (P∧Q)⇒R

T    T

T    F

F    T

F    T

F    T

F    T

F    T

F    T

Q⇒R  P⇒(Q⇒R)

T    T

F    F

T    T

T    T

T    T

F    T

T    T

T    T

评分--评价答案

Introduction to Mathematical Thinking - Week 2的更多相关文章

  1. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  2. Introduction to Mathematical Thinking - Week 9 评论答案2

    根据 rubic 打分. 1. 我认为,如果说明 m, n 是自然数,所以最小值是 1 会更清楚.所以 Clarity 我给了 3 分.其他都是 4 分,所以一共是 23 分. 2.  我给出的分数 ...

  3. Introduction to Mathematical Thinking - Week 9

    错题 评分出错 题目要求的是 "any" ,而答案只给出了一个.所以认为回答者没有理解题意,连 any 都没有理解.所以 0 分. 第一,标准的归纳法只能对自然数使用,而题目要求的 ...

  4. Introduction to Mathematical Thinking - Week 7

    Q: Why did nineteenth century mathematicians devote time to the proof of self-evident results? Selec ...

  5. Introduction to Mathematical Thinking - Week 4

    否定的逻辑 应该思考符号背后表示的逻辑,而不是像操作算术运算符一样操作逻辑符号. 比如 对于任意的 x,x属于自然数,那么 x 是偶数或者奇数:这是对的 如果使用“乘法分配律”拆分,变成“对于任意的x ...

  6. Introduction to Mathematical Thinking - Week 3

    there exists and all there exists 证明根号2是无理数 all 习题 3. Which of the following formal propositions say ...

  7. Deep Learning and Shallow Learning

    Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...

  8. Technical Development Guide---for Google

    Technical Development Guide This guide provides tips and resources to help you develop your technica ...

  9. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

随机推荐

  1. javascript获取日期的年,月,日

    var date = new Date(strTime); return date.getFullYear()+"-"+(date.getMonth()+1)+"-&qu ...

  2. 阿里云dataworks数据工场用户使用子账号

    如果您是第一次使用子账号登录数加平台和使用DataWorks,您需要获知以下内容: 该子账号所属主账号的企业别名. 该子账号的用户名和密码. 该子账号的AccessKey ID和AccessKey S ...

  3. EF实体查询出的数据List<T>转DataTable出现【DataSet 不支持 System.Nullable<>】的问题

    public static DataTable ToDataTable<T>(this IEnumerable<T> varlist, CreateRowDelegate< ...

  4. 由"永恒之蓝"病毒而来的电脑知识科普

    永恒之蓝病毒事件: 继英国医院被攻击,随后在刚刚过去的5月12日晚上20点左右肆虐中国高校的WannaCry勒索事件,全国各地的高校学生纷纷反映,自己的电脑遭到病毒的攻击,文档被加密,壁纸遭到篡改,并 ...

  5. eslint 人性化配置

    错误列表: http://www.zystudios.cn/blog/post/70.Shtml 人性化一点.别老虐我啊晓梦大师 module.exports = { root: true, pars ...

  6. 利用Python读取文件名并生成txt文件——以图片文件为例

    效果如下: 代码: import os class ReadImageName(): def __init__(self): self.path = '.' def readname(self): f ...

  7. Windows下MySQL備份與還原

    方法一 備份: C:\...\MySQL\MySQL Server 5.1\bin\>mysqldump aa -u root -p > d:\aaa.sql.bak 還原: C:\... ...

  8. MVC的设计模式在JavaWeb中的实现

    JSP开发模式 jsp开发模式的发展 1.模式1:(适合小型项目的技术的开发)     a.第一版本号,纯jsp(封装数据.处理数据,显示数据)     b.第二版本号,Jsp+JavaBean.   ...

  9. java中static变量的声明和初始化

     目录(?)[+] 问题1静态变量如何初始化 问题2JDK如何处理static块 问题3如何看待静态变量的声明 对初始问题的解答 在网上看到了下面的一段代码: public class Test  ...

  10. Help Hanzo lightof 1197 求一段区间内素数个数,[l,r] 在 [1,1e9] 范围内。r-l<=1e5; 采用和平常筛素数的方法。平移区间即可。

    /** 题目:Help Hanzo lightof 1197 链接:https://vjudge.net/contest/154246#problem/M 题意:求一段区间内素数个数,[l,r] 在 ...