题目链接

BZOJ1857

题解

画画图就发现实际上是在\(AB\)上和\(CD\)上分别选两个点\(E\),\(F\),使得\(t_{AE} + t_{EF} + t_{FD}\)最小

然后猜想到当\(E\)固定时,这个值的函数关于\(|CF|\)是下凸的

当\(F\)总取最优时,关于\(|AE|\)也是下凸的

感觉十分的对

两层三分即可

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
struct point{
double x,y;
}A,B,C,D,AB,CD;
inline point operator -(const point& a,const point& b){
return (point){a.x - b.x,a.y - b.y};
}
inline point operator +(const point& a,const point& b){
return (point){a.x + b.x,a.y + b.y};
}
inline point operator *(const double& a,const point& b){
return (point){a * b.x,a * b.y};
}
double dis(const point& a,const point& b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
double P,Q,R;
double cal2(double lam1,double lam2){
point E = A + lam1 * AB,F = C + lam2 * CD;
return dis(A,E) / P + dis(E,F) / R + dis(F,D) / Q;
}
double cal(double lam){
double l = 0,r = 1,lmid,rmid,len,cl,cr;
while (r - l > 0.00001){
len = r - l;
lmid = l + len / 3;
rmid = r - len / 3;
cl = cal2(lam,lmid); cr = cal2(lam,rmid);
if (cl > cr) l = lmid;
else r = rmid;
}
return cal2(lam,(r + l) / 2);
}
int main(){
scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf",&A.x,&A.y,&B.x,&B.y,&C.x,&C.y,&D.x,&D.y,&P,&Q,&R);
AB = B - A; CD = D - C;
double l = 0,r = 1,lmid,rmid,len,cl,cr;
while (r - l > 0.00001){
len = r - l;
lmid = l + len / 3;
rmid = r - len / 3;
cl = cal(lmid); cr = cal(rmid);
if (cl > cr) l = lmid;
else r = rmid;
}
printf("%.2lf\n",cal((l + r) / 2));
return 0;
}

BZOJ1857 [Scoi2010]传送带 【三分法】的更多相关文章

  1. BZOJ1857 Scoi2010 传送带 【三分】

    BZOJ1857 Scoi2010 传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P ...

  2. [SCOI2010]传送带 三分法

    [SCOI2010]传送带 LG传送门 三分法模板. 关于为什么可以三分,我选择感性理解,有人证明了,总之我是懒得证了. 假设路径是\(A \to E \to F \to D\),\(E\)和\(F\ ...

  3. 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  4. 【BZOJ1857】[Scoi2010]传送带 三分法

    三分套三分,挺神奇的...每次找到,每个传送带的上下两个三等分点,下面那个小,则一定有更优的在中间. #include <iostream> #include <cstdio> ...

  5. bzoj1857: [Scoi2010]传送带--三分套三分

    三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...

  6. BZOJ1857[SCOI2010]传送带

    题目大意:平面上两条线段,一个人从一条线段的一个点到另一条线段的一个点,最小时间是多少 路径肯定是在一条线段上走一段,然后走平面,最后再走另一条线段,那么需要确定的就是在两条线段上走的距离,其他暴力算 ...

  7. [BZOJ1857][SCOI2010]传送带-[三分]

    Description 传送门 Solution 三分套三分.代码简单但是证明苦兮兮.. 假如我们在AB上选了一个点G,求到该点到D的最小时间. 图中b与CD垂直.设目前从G到D所耗时间最短的路径为G ...

  8. 【BZOJ1857】[Scoi2010]传送带 三分套三分

    [BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...

  9. 【BZOJ-1857】传送带 三分套三分

    1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1077  Solved: 575[Submit][Status][ ...

随机推荐

  1. 【Hive二】 Hive基本使用

    Hive基本使用 创建数据库 创建一个数据库,数据库在HDFS上的默认存储路径是/user/hive/warehouse/*.db create database 库名; 避免要创建的数据库已经存在错 ...

  2. pynlpir + pandas 文本分析

    pynlpir是中科院发布的一个分词系统,pandas(Python Data Analysis Library) 是python中一个常用的用来进行数据分析和统计的库,利用这两个库能够对中文文本数据 ...

  3. Python学习:If 语句与 While 语句

    If 语句 用以检查条件:如果条件为真(True),将运行这一块的语句(称作 if-block 或 if 块)    则将运行另一块语句(称作 else-block 或 else 块),其中 else ...

  4. ruby json解析&生成

    JSON 通常用于与服务端交换数据. 在接收服务器数据时一般是字符串. 我们可以使用 JSON.parse() 方法将数据转换为 ruby 对象. 一. json字符串解析 require 'json ...

  5. Linux Shell 与Linux常用命令

    Linux的人际交互分为图形界面方式和命令行方式. Linux本身只是一个操作系统内核,而由X Window图形用户接口为Linux提供图形用户界面功能.可以把X Window理解为一个运行在Linu ...

  6. 【Android开发】 HttpURLConnection.getOutputStream() IO异常

    HttpURLConnection.getOutputStream()  IO异常百度下,没找到想要的答案.网上的解决方案几乎都是从权限考虑的~最后找到个国外网站上找到答案~ http://stack ...

  7. Oracle 学习笔记(四)

    ​oracle表查询 使用逻辑操作符号  查询工资高于 500 或者是岗位为 MANAGER 的雇员,同时还要满足他们的姓名首字母为大写 J SELECT * FROM emp WHERE (sal ...

  8. FlaskWeb开发从入门到放弃(二)

    第5章 章节五 01 内容概要 02 内容回顾 03 面向对象相关补充:metaclass(一) 04 面向对象相关补充:metaclass(二) 05 WTforms实例化流程分析(一) 06 WT ...

  9. CSP201409-1:相邻数对

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  10. 阿里的100TB Sort Benchmark排序比雅虎快了一倍还多,我的看法

    如果我的判断正确,它们使用的软件和算法应该是HADOOP,MAP/REDUCE,或者类似的技术方案.如果这些条件一样,影响计算结果的还有三个因素: 1.CPU的数量和CPU的处理能力     CPU的 ...