题目描述

小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。每种金币小凯都有 无数个。在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品。

输入输出格式

输入格式:

输入数据仅一行,包含两个正整数 aa 和 bb,它们之间用一个空格隔开,表示小凯手 中金币的面值。

输出格式:

输出文件仅一行,一个正整数 NN,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。

【数据范围与约定】

对于 30%的数据: 1 \le a,b \le 501≤a,b≤50。

对于 60%的数据: 1 \le a,b \le 10^41≤a,b≤104。

对于 100%的数据:1 \le a,b \le 10^91≤a,b≤109。

【题解】

        ①可以得到结论:ans=a*b-a-b(然后你可以水掉它或者继续到②)

        ②

        引理:不定方程:ax+by=c若有解,a,b,c>0                   

                则必有一特解使得-a<y0≤0,x>0;

(引理可以用数轴法,不再赘述)

证明:

       先证ax+by=ab-a-b在题设下无解   

-》   a(x+1)+b(y+1)=ab  可得:a|y+1 b|x+1 ,

        于是可设:y=k2*a-1,x=k1*b-1     k1,k2>0

-》   ab*(k1+k2-1)=0  即(k1+k2-1)=0矛盾;

       再证ax+by=ab-a-b+k(k>0)在题设下必有解   

-》   a(x+1)+b(y+1)=ab+k 设x+1=x1,y+1=y1 不失正确性的将它 拆成:

         ax1+by1=ab    …①           ax2+by2=k    …②

       由①可得x1=0,y1=a的特解,由②再加引理可得有一组x2>0,-a< y2≤0 加一加就可以得到原方程必有一组解使得x>0,0<y≤a;

       综上即ab-a-b为ans

       证毕。

 #include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#define ll long long
#define Run(i,l,r) for(int i=l;i<=r;i++)
#define Don(i,l,r) for(int i=l;i>=r;i--)
using namespace std;
ll a,b;
int main()
{ cin>>a>>b;
cout<<a*b-a-b<<endl;
return ;
}//by tkys_Austin;

          

【NOIP2017 D1 T1 小凯的疑惑】的更多相关文章

  1. NOIP2017 Day1 T1 小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小凯想知道在无法准确支付的物品中,最贵的价 ...

  2. [NOIP2017提高组]小凯的疑惑-扩展欧几里得

    #include<bits/stdc++.h> using namespace std; long long a,b,x,y,ans,tmp; inline void ex_gcd(lon ...

  3. [NOIp2017提高组]小凯的疑惑

    题目大意: 给你两个数a,b,保证a与b互质,求最大的x满足不能被表示成若干个a与b的和. 思路: 据说是小学奥数题. 考场上先写了个a*b的60分DP,然后打表发现答案就是(a-1)*(b-1)-1 ...

  4. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  5. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

  6. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  7. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

  8. NOIP 2017 小凯的疑惑

    # NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...

  9. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

随机推荐

  1. 首层nginx 传递 二级代理,三级代理......多级代理nginx 客户端真实IP的方法

    首层nginx(172.25.10.1):先获取真实IP($remote_addr),再将真实IP传递给X-Forwarded-For    proxy_set_header X-Real-IP $r ...

  2. Linux 内核之api_man 手册安装

    开发环境:Ubuntu18.04,虚拟机virtual box 1.安装XML格式转换 sudo apt  install xmlto 2.在内核目录执行 make mandocs  大概持续了半小时 ...

  3. 2019-04-10 python入门学习——教材和工具准备

    # 从决定学习编程语言到正式做出计划挤出空余时间,历经一年半,因工作原因及生活原因不断搁浅,从湖北到浙江再回湖北,暂时稳定在一家小公司,从日常加班中压缩时间学习,于此记录学习进度.学习问题,在此过程中 ...

  4. chromedriver各个版本的下载

    驱动的下载地址如下: http://chromedriver.storage.googleapis.com/index.html 注意:64位向下兼容,直接下载32位的就可以啦,亲测可用.

  5. ruby Dir类

    类方法 1. Dir[pat]    Dir::glob( pat) 返回一个数组,包含与指定的通配符模式 pat 匹配的文件名: * - 匹配包含 null 字符串的任意字符串 ** - 递归地匹配 ...

  6. LeetCode:16. 3Sum Closest(Medium)

    1. 原题链接 https://leetcode.com/problems/3sum-closest/description/ 2. 题目要求 数组S = nums[n]包含n个整数,找出S中三个整数 ...

  7. LINUX目录的意思

    Linux系统/目录下的文件夹里面分别是以下内容: /usr 包含所有的命令和程序库.文档和其他文件,还包括当前linux发行版的主要应用程序 /var 包含正在操作的文件,还有记录文件.加密文件.临 ...

  8. Python 基本文件操作

    文件模式 'r' 读模式 'w' 写模式 (清除掉旧有数据并重新开始) 'a' 追加模式 'b' 二进制模式 '+' 读/写模式 注意: 'b'   : 二进制模式 可添加到其他模式中使用 '+'  ...

  9. django中判断当前user具有是否有对模块的增删改查权限

    首先简单了解一下user的一些属性 User对象 User对象是认证系统的核心.用户对象通常用来代表网站的用户,并支持例如访问控制.注册用户.关联创建者和内容等.在Django认证框架中只有一个用户类 ...

  10. @section script{}的使用

    1,MVC视图中,JS代码被放在下面的Razor代码中(@section script{}) 2,这样做的好处是:在视图进行JS编码时是一个很好 的实践,在共享视图(_layout.cshtml),存 ...