Floyd算法用于求一个带权有向图(Wighted Directed Graph)的任意两点距离的算法,运用了动态规划的思想,算法的时间复杂度为O(n^3)。具体方法是:设点i到点j的距离为d[i][j],循环尝试插入点k,若能使得d[i][k]+d[k][j]的距离变短,则插入点k,否则不插入。C++代码如下:

#include<iostream>
using namespace std; int Floyd(int *d[],int n) //d[][]为点i到点j的有向直线距离
{
for(int i=0;i<n;i++) //前两层循环针对点i和点j
for(int j=0;j<n;j++)
for(int k=0;k<n;k++) //第三层循环尝试插入点k
d[i][j] = min(d[i][j],d[i][k]+d[k][j]);//动态规划的思想
} int main() //举例说明
{
const int n = 7,M=9999999;//M很大,d[i][j]=M表示没有从i指向j的有向路径
int d[n][n] = {{0,3,2,1,M,M,M},
{M,0,M,M,2,M,4},
{M,M,0,M,2,M,M},
{M,M,M,0,2,7,M},
{M,M,M,M,0,M,2},
{M,M,M,M,M,0,3},
{M,M,M,M,M,M,0}};
int **D = new int*[n];
for(int i=0;i<n;i++)
{
D[i] = new int[n];
for(int j=0;j<n;j++)
D[i][j] = d[i][j];
}
Floyd(D,n);
cout << D[0][n-1] << endl;
return 0;
}

只有5行代码的算法——Floyd算法的更多相关文章

  1. 多源最短路径算法—Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  2. 图的最短路径算法-- Floyd算法

    Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...

  3. 最短路-SPFA算法&Floyd算法

    SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 ...

  4. [链接]最短路径的几种算法[迪杰斯特拉算法][Floyd算法]

    最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算 ...

  5. (转)最短路算法 -- Floyd算法

    转自:http://blog.51cto.com/ahalei/1383613        暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程 ...

  6. 最短路径---Dijkstra/Floyd算法

    1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...

  7. Floyd 算法的动态规划本质

    [转载自:http://www.cnblogs.com/chenying99/p/3932877.html] Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(A ...

  8. 探求Floyd算法的动态规划本质(转)

    ---恢复内容开始--- Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(All Paris Shortest Paths,APSP)的算法.从表面上粗看,Fl ...

  9. 一步步学算法(算法分析)---6(Floyd算法)

    Floyd算法 Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命 ...

随机推荐

  1. java--List转换成json格式

    方法一 首先导入jar包,json-rpc-1.0.jar public class List2Json { public static JSONArray ProLogList2Json(List& ...

  2. Android Studio的初体验

    在机缘巧合之下遇到了安卓开发,接触了Android Studio开始了漫长的改bug的道路,以下为简易版心酸历程 首先我需要成功安装Android Studio,由于我过于叛逆以及为了避免出错于是从一 ...

  3. 【Android入门】——模拟器的创建及常见问题汇总

    [前言] 刚刚接触Android,第一门课我们就来创建一个模拟器.安卓模拟器,简称AVD(Android Virtual Device),是安卓运行的虚拟设备.有了他以后,我们就不需要在连着安卓手机进 ...

  4. QT启动一个工程

    功能描述: 模拟如下页面. 当输入一个字符串时打开对应的应用程序. 实现方法: 1. 建立工程 2. 界面编辑: 3. 在test1.h中添加slot声明 4. test1.cpp中添加slot定义 ...

  5. 一个类似植物大战僵尸的python源码

    # 1 - Import library import pygame from pygame.locals import * import math import random # 2 - Initi ...

  6. gdb查看内存中所有的信息

    他们会把做内核的人当成无所不能的,认为你们对反编译啥的都应该会. 俗话说的好,人要活成别人想要的样子嘛: 看下如何停止进程,让大家看到内存中到底是啥样子; 简单的print globalA当然能输出来 ...

  7. 框架开发中的junit单元测试

    首先写一个测试用的公共类,如果要搭建测试环境,只要继承这个公共类就能很容易的实现单元测试,代码如下 import org.junit.runner.RunWith; import org.spring ...

  8. BZOJ4537 HNOI2016最小公倍数(莫队+并查集)

    考虑边只有一种权值的简化情况.那么当且仅当两点可以通过边权<=x的边连通,且连通块内最大边权为x时,两点间存在路径max为x的路径.可以发现两种权值是类似的,当且仅当两点可以通过边权1<= ...

  9. [bzoj4071] [Apio2015]巴邻旁之桥

    Description 一条东西走向的穆西河将巴邻旁市一分为二,分割成了区域 A 和区域 B. 每一块区域沿着河岸都建了恰好 1000000001 栋的建筑,每条岸边的建筑都从 0 编号到 10000 ...

  10. 你试过不用if写代码吗?

    我在教新手编程时,喜欢给他们一些小小的挑战,比如:不使用if语句(或者三元运算符.switch语句等)解决一些编程问题.这样做有什么意义吗?事实上,它可以迫使你从不同的角度寻找解决方法,也许可以找到更 ...