转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/

   http://blog.csdn.net/xiaofengcanyuexj/article/details/17119705

SG函数

“Sprague-Grundy函数”

我们将面对更多与Nim游戏有关的变种,还会看到Nim游戏的a1^a2^...^an这个值更广泛的意义。

上面的文章里我们仔细研究了Nim游戏,并且了解了找出必胜策略的方法。但如果把Nim的规则略加改变,你还能很快找出必胜策略吗?比如说:有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……这时看上去问题复杂了很多,但相信你如果掌握了本节的内容,类似的千变万化的问题都是不成问题的。

现在我们来研究一个看上去似乎更为一般的游戏:给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移动者判负。事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型。也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下面我们就在有向无环图的顶点上定义Sprague-Garundy函数。

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy函数g如下:g(x)=mex{ g(y) | y是x的后继 }。

来看一下SG函数的性质。

1、所有的terminal position所对应的顶点,也就是没有出边的顶点,其SG值为0,因为它的后继集合是空集。

2、对于一个g(x)=0的顶点x,它的所有后继y都满足g(y)!=0

3、对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0。

以上这三句话表明,顶点x所代表的postion是P-position(先手胜为N局面,后手胜为P局面)当且仅当g(x)=0。我们通过计算有向无环图的每个顶点的SG值,就可以对每种局面找到必胜策略了。但SG函数的用途远没有这样简单。如果将有向图游戏变复杂一点,比如说,有向图上并不是只有一枚棋子,而是有n枚棋子,每次可以任选一颗进行移动,这时,怎样找到必胜策略呢?

让我们再来考虑一下顶点的SG值的意义。当g(x)=k时,表明对于任意一个0<=i<k,都存在x的一个后继y满足g(y)=i。也就是说,当某枚棋子的SG值是k时,我们可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。不知道你能不能根据这个联想到Nim游戏,Nim游戏的规则就是:每次选择一堆数量为k的石子,可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。这表明,如果将n枚棋子所在的顶点的SG值看作n堆相应数量的石子,那么这个Nim游戏的每个必胜策略都对应于原来这n枚棋子的必胜策略!

对于n个棋子,设它们对应的顶点的SG值分别为(a1,a2,...,an),再设局面(a1,a2,...,an)时的Nim游戏的一种必胜策略是把ai变成k,那么原游戏的一种必胜策略就是把第i枚棋子移动到一个SG值为k的顶点。这听上去有点过于神奇——怎么绕了一圈又回到Nim游戏上了。

其实我们还是只要证明这种多棋子的有向图游戏的局面是P-position当且仅当所有棋子所在的位置的SG函数的异或为0。这个证明与上节的Bouton's Theorem几乎是完全相同的,只需要适当的改几个名词就行了。

刚才,我为了使问题看上去更容易一些,认为n枚棋子是在一个有向图上移动。但如果不是在一个有向图上,而是每个棋子在一个有向图上,每次可以任选一个棋子(也就是任选一个有向图)进行移动,这样也不会给结论带来任何变化。

所以我们可以定义有向图游戏的和(Sum of Graph Games):设G1、G2、……、Gn是n个有向图游戏,定义游戏G是G1、G2、……、Gn的和(Sum),游戏G的移动规则是:任选一个子游戏Gi并移动上面的棋子。Sprague-Grundy Theorem就是:g(G)=g(G1)^g(G2)^...^g(Gn)。也就是说,游戏的和的SG函数值是它的所有子游戏的SG函数值的异或。

再考虑在本文一开头的一句话:任何一个ICG都可以抽象成一个有向图游戏。所以“SG函数”和“游戏的和”的概念就不是局限于有向图游戏。我们给每个ICG的每个position定义SG值,也可以定义n个ICG的和。所以说当我们面对由n个游戏组合成的一个游戏时,只需对于每个游戏找出求它的每个局面的SG值的方法,就可以把这些SG值全部看成Nim的石子堆,然后依照找Nim的必胜策略的方法来找这个游戏的必胜策略了!

回到本文开头的问题。有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……我们可以把它看作3个子游戏,第1个子游戏只有一堆石子,每次可以取1、2、3颗,很容易看出x颗石子的局面的SG值是x%4。第2个子游戏也是只有一堆石子,每次可以取奇数颗,经过简单的画图可以知道这个游戏有x颗石子时的SG值是x%2。第3个游戏有n-2堆石子,就是一个Nim游戏。对于原游戏的每个局面,把三个子游戏的SG值异或一下就得到了整个游戏的SG值,然后就可以根据这个SG值判断是否有必胜策略以及做出决策了。其实看作3个子游戏还是保守了些,干脆看作n个子游戏,其中第1、2个子游戏如上所述,第3个及以后的子游戏都是“1堆石子,每次取几颗都可以”,称为“任取石子游戏”,这个超简单的游戏有x颗石子的SG值显然就是x。其实,n堆石子的Nim游戏本身不就是n个“任取石子游戏”的和吗?

所以,

对于我们来说,SG函数与“游戏的和”的概念不是让我们去组合、制造稀奇古怪的游戏,而是把遇到的看上去有些复杂的游戏试图分成若干个子游戏,对于每个比原游戏简化很多的子游戏找出它的SG函数,然后全部异或起来就得到了原游戏的SG函数,就可以解决原游戏了。

暴力枚举法

 //f[]:可以取走的石子个数
//sg[]:0~n的SG函数值
//hash[]:mex{}
int f[N],sg[N],hash[N];
void getSG(int n)
{
int i,j;
memset(sg,,sizeof(sg));
for(i=;i<=n;i++)
{
memset(hash,,sizeof(hash));
for(j=;f[j]<=i;j++)
hash[sg[i-f[j]]]=;
for(j=;j<=n;j++) //求mes{}中未出现的最小的非负整数
{
if(hash[j]==)
{
sg[i]=j;
break;
}
}
}
}

记忆化搜索法

 //注意 S数组要按从小到大排序 SG函数要初始化为-1 对于每个集合只需初始化1遍
//n是集合s的大小 S[i]是定义的特殊取法规则的数组
int s[],sg[],n;
int SG_dfs(int x)
{
int i;
if(sg[x]!=-)
return sg[x];
bool vis[];
memset(vis,,sizeof(vis));
for(i=;i<n;i++)
{
if(x>=s[i])
{
SG_dfs(x-s[i]);
vis[sg[x-s[i]]]=;
}
}
int e;
for(i=;;i++)
if(!vis[i])
{
e=i;
break;
}
return sg[x]=e;
}
 

【转】博弈—SG函数的更多相关文章

  1. S-Nim HDU 1536 博弈 sg函数

    S-Nim HDU 1536 博弈 sg函数 题意 首先输入K,表示一个集合的大小,之后输入集合,表示对于这对石子只能去这个集合中的元素的个数,之后输入 一个m表示接下来对于这个集合要进行m次询问,之 ...

  2. hdu 3032(博弈sg函数)

    题意:与原来基本的尼姆博弈不同的是,可以将一堆石子分成两堆石子也算一步操作,其它的都是一样的. 分析:由于石子的堆数和每一堆石子的数量都很大,所以肯定不能用搜索去求sg函数,现在我们只能通过找规律的办 ...

  3. HDU-4678 Mine 博弈SG函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4678 题意就不说了,太长了... 这个应该算简单博弈吧.先求联通分量,把空白区域边上的数字个数全部求出 ...

  4. (转)博弈 SG函数

    此文为以下博客做的摘要: https://blog.csdn.net/strangedbly/article/details/51137432 ---------------------------- ...

  5. 尼姆博弈+SG函数

    博弈这个东西真的很费脑诶.. 尼姆博奕(Nim Game):游戏者轮流从一堆棋子(或者任何道具)中取走一个或者多个,最后不能再取的就是输家.当指定相应数量时,一堆这样的棋子称作一个尼姆堆 当n堆棋子的 ...

  6. HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)

    Fibonacci again and again Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & ...

  7. Light OJ 1199 - Partitioning Game (博弈sg函数)

    D - Partitioning Game Time Limit:4000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  8. LightOJ 1315 - Game of Hyper Knights(博弈sg函数)

    G - Game of Hyper Knights Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & ...

  9. Light OJ 1296 - Again Stone Game (博弈sg函数递推)

    F - Again Stone Game Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

随机推荐

  1. JHChart iOS图表工具库1.0.3新版本详解

    前言. 从2016年4月14日开始,本人着手开发了JHChart图表工具库.经过断断续续的开发,截止到现在,已经实现了折线图.柱状图.饼状图.环形图和表格样式的图表功能.为了方便使用,我已经将一个简单 ...

  2. Linux更改计算机名称

    1.修改:vim /etc/hosts 2.修改:vim /etc/sysconfig/network 3.重启:reboot 如不重启可以输入:hostname  新改的计算机名称,然后su

  3. UML大战需求分析——阅读笔记04

    读<UML大战需求分析>有感04 开发某系统的重要前提是: 这个系统有谁在用? 这些人通过这个系统能做什么事? 一般搞清楚这件事,再画个业务流程图,就能条例清楚的表达系统的需求了.作为一个 ...

  4. 两个单选按钮(一个是,一个否 ),一个div层,实现点击隐藏,显示div

    <script type="text/javascript"> function diva(){ document.getElementById('div1').sty ...

  5. 【React】启动dva脚手架

    开始前: 确保node版本为6.5以上. // 安装脚手架 npm i dva-cli -g // 自动安装新工程 dva new newProjectName // 导入antd包 npm i an ...

  6. 手机端页面rem自适应脚本

    什么是rem 参照 web app变革之rem 在我看来,rem就是1rem单位就等于html节点fontsize的像素值.所以改变html节点的fontsize是最为关键的一步.根据手机宽度改变相对 ...

  7. 用python DIY一个图片转pdf工具并打包成exe

    最近因为想要看漫画,无奈下载的漫画是jpg的格式,网上的转换器还没一个好用的,于是乎就打算用python自己DIY一下: 这里主要用了reportlab.开始打算随便写几行,结果为若干坑纠结了挺久,于 ...

  8. mysql 中的LIMIT用法

    select * from table_name LIMIT 起始偏移量,数量 (1)起始偏移量为0:代表没有偏移,即从第1行开始. (2)数量为-1:代表是无穷,即偏移量之后所有的行. (3)LIM ...

  9. SQL SERVER 得到汉字首字母函数四版全集 --【叶子】

    --创建取汉字首字母函数(第三版) create function [dbo].[f_getpy_V3] ( ) ) ) as begin ),) ,@len = len(@col),@sql = ' ...

  10. Web Applicationservlet,cookie,session

    Web Application简介: Web Application NameWEB-INFweb.xml 该web application的配置文件lib 该web application用到的依赖 ...