Spark applications run as independent sets of processes on a cluster, coordinated by the SparkContext object in your main program (called the driver program).

Specifically, to run on a cluster, the SparkContext can connect to several types of cluster managers (either Spark’s own standalone cluster manager, Mesos or YARN), which allocate resources across applications. Once connected, Spark acquires executors on nodes in the cluster, which are processes that run computations and store data for your application. Next, it sends your application code (defined by JAR or Python files passed to SparkContext) to the executors. Finally, SparkContext sends tasks to the executors to run.

There are several useful things to note about this architecture:

1、Each application gets its own executor processes, which stay up for the duration of the whole application and run tasks in multiple threads. This has the benefit of isolating applications from each other, on both the scheduling side (each driver schedules its own tasks) and executor side (tasks from different applications run in different JVMs). However, it also means that data cannot be shared across different Spark applications (instances of SparkContext) without writing it to an external storage system.

2、Spark is agnostic to the underlying cluster manager. As long as it can acquire executor processes, and these communicate with each other, it is relatively easy to run it even on a cluster manager that also supports other applications (e.g. Mesos/YARN).

3、The driver program must listen for and accept incoming connections from its executors throughout its lifetime (e.g., see spark.driver.port in the network config section). As such, the driver program must be network addressable from the worker nodes.

4、Because the driver schedules tasks on the cluster, it should be run close to the worker nodes, preferably on the same local area network. If you’d like to send requests to the cluster remotely, it’s better to open an RPC to the driver and have it submit operations from nearby than to run a driver far away from the worker nodes.

应用程序可以使用spark-submit脚本提交。参考application submission guide

每一个驱动程序都有一个Web UI(默认4040端口),显示正在执行的任务、执行程序和存储使用等信息。可通过http://<driver-node>:4040访问该页面。参考Monitoring and Instrumentation

Spark可以跨应用程序和应用程序内进行资源分配控制。参考Job Scheduling

术语表

Term Meaning
Application User program built on Spark. Consists of a driver program and executors on the cluster.
Application jar

A jar containing the user's Spark application.

In some cases users will want to create an "uber jar" containing their application along with its dependencies.

The user's jar should never include Hadoop or Spark libraries, however, these will be added at runtime.

Driver program The process running the main() function of the application and creating the SparkContext
Cluster manager An external service for acquiring resources on the cluster (e.g. standalone manager, Mesos, YARN)
Deploy mode

Distinguishes where the driver process runs. In "cluster" mode, the framework launches the driver inside of the cluster.

In "client" mode, the submitter launches the driver outside of the cluster.

Worker node Any node that can run application code in the cluster
Executor

A process launched for an application on a worker node, that runs tasks and keeps data in memory or disk storage across them.

Each application has its own executors.

Task A unit of work that will be sent to one executor
Job

A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action (e.g. savecollect);

Stage

Each job gets divided into smaller sets of tasks called stages that depend on each other (similar to the map and reduce stages in MapReduce);

spark第三篇:Cluster Mode Overview 集群模式预览的更多相关文章

  1. Spark 官方文档(2)——集群模式

    Spark版本:1.6.2 简介:本文档简短的介绍了spark如何在集群中运行,便于理解spark相关组件.可以通过阅读应用提交文档了解如何在集群中提交应用. 组件 spark应用程序通过主程序的Sp ...

  2. Apache Spark 2.2.0 中文文档 - 集群模式概述 | ApacheCN

    集群模式概述 该文档给出了 Spark 如何在集群上运行.使之更容易来理解所涉及到的组件的简短概述.通过阅读 应用提交指南 来学习关于在集群上启动应用. 组件 Spark 应用在集群上作为独立的进程组 ...

  3. Redis集群功能预览

    目前Redis Cluster仍处于Beta版本,Redis 3.0将会加入,在此可以先对其主要功能和原理进行一个预览.参考<Redis Cluster - a pragmatic approa ...

  4. redis迁移第三篇(cluster forget)

    1.删除错误节点,带有 fail,noaddr , 这种需要用 cluster forget redis集群迁移之后,由于之前的误操作,导致pod日志里面出现这样的错误,出现一会好一会不好的情况,就是 ...

  5. Spark集群模式概述

    作者:foreyou出处:http://www.foreyou.net/2015/06/22/spark-cluster-mode-overview/声明:本文采用以下协议进行授权: 署名-非商用|C ...

  6. Spark集群模式&Spark程序提交

    Spark集群模式&Spark程序提交 1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos- ...

  7. 编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本]

    编写Spark的WordCount程序并提交到集群运行[含scala和java两个版本] 1. 开发环境 Jdk 1.7.0_72 Maven 3.2.1 Scala 2.10.6 Spark 1.6 ...

  8. 近千节点的Redis Cluster高可用集群案例:优酷蓝鲸优化实战(摘自高可用架构)

    (原创)2016-07-26 吴建超 高可用架构导读:Redis Cluster 作者建议的最大集群规模 1,000 节点,目前优酷在蓝鲸项目中管理了超过 700 台节点,积累了 Redis Clus ...

  9. 超详细,多图文使用galera cluster搭建mysql集群并介绍wsrep相关参数

    超详细,多图文使用galera cluster搭建mysql集群并介绍wsrep相关参数 介绍galera cluster原理的文章已经有一大堆了,百度几篇看一看就能有相关了解,这里就不赘述了.本文主 ...

随机推荐

  1. poj1840 Eqs(hash+折半枚举)

    Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...

  2. whereis libjpeg.so.7

    在服务器上调用import ImageFont时报如下错误 ImportError: The _imagingft C module is not installed (服务器为Centos5.5, ...

  3. 最近做手机端,GPS,微信QQ分享总结的问题

    Android端 百度地图: 1.libs包中armeabi下liblocSDK4d.so文件丢失,导致百度定位失效. 微信分享: 1.分享App,app的内容(图片加描述)不能超过32kb ,不然无 ...

  4. 安卓开发时访问google方法

    启动浏览器后15秒左右,浏览器的右上角就会出现图标 启用防火墙功能(右上角墙形图标),这时候程序就会去寻找网上代理,从而达到访问GOOGLE的效果,提示如果不访问google网站,可再点击一下关闭防火 ...

  5. WPF的Image控件图片不能显示出来的问题探究

    在wpf项目中,用Image来显示资源图片,在界面是可以显示,但是在运行的时候却显示不出来. <Image Source=" HorizontalAlignment="Lef ...

  6. spring (1)

    相关名词: 控制反转(IoC):将对象的创建交由spring创建,1创建新class,2xml中配置 3测试context.getBean("") 类似对象工厂(工厂模式)-xml ...

  7. [Algorithm]排序

    一.排序算法 1.插入排序 1) 直接插入排序:(插入类) 1 void InsertSort( ElemType R[], int n ) 2 { 3 for ( int i = 2; i < ...

  8. NSRange 范围

    前言 结构体,这个结构体用来表示事物的一个范围,通常是字符串里的字符范围或者集合里的元素范围. typedef struct _NSRange { NSUInteger location; // 表示 ...

  9. Linux简单部署svn服务

    最近需要练习一下svn的命令行使用方法,以便编写自动化部署的脚本,但是不敢用正式的svn库进行练习,所以自己部署了一个svn服务,用来练习 1.安装svn server 我用的是ubuntu $apt ...

  10. Jmeter_Beanshell_使用Java处理JSON块

    版权声明:本文为博主原创文章,转载请注明出处. [环境] ①Jmeter版本:3.2,JDK:1.8 ②前置条件:将json.jar包置于..\apache-jmeter-3.2\lib\下,并将该j ...