P4501 [ZJOI2018]胖
题目
官方口中的送分题
做法
我们通过手玩(脑补),\(a_i\)所作的贡献(能更新的点)为:在\(a_i\)更新\(\forall x\)更新前前没有其他点能把\(x\)更新到更优
我们预处理出数组\(dis[i]\)为\(1\)号点走到\(i\)号点的未包含计划前的距离
对于\(x≤a[i]\Longrightarrow edge[x]=-dis[x]+(l[i]+dis[a[i]])\),对于\(x≥a[i]\Longrightarrow dis[x]+(l[i]-dis[a[i]])\)
能更新的范围显然是有单调性的,二分左右端点(\(st\)表维护区间最小值判断),时间复杂度\(O(nlogn^2)\)
My complete code
#include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL maxn=1e6,inf=1e17;
inline LL Read(){
LL x(0),f(1);char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
LL n,q,K; LL dis[maxn];
struct node{
LL p,l;
bool operator < (const node &b)const{
return p<b.p;
}
}a[maxn];
struct ST{
LL st1[maxn][20],st2[maxn][20];
inline void Init(){
for(LL i=1;i<=K;++i)
st1[i][0]=a[i].l-dis[a[i].p],st2[i][0]=a[i].l+dis[a[i].p];
for(LL j=1;j<=18;++j)
for(LL i=1;i<=K;++i)
st1[i][j]=min(st1[i][j-1],st1[i+(1<<j-1)][j-1]),
st2[i][j]=min(st2[i][j-1],st2[i+(1<<j-1)][j-1]);
}
inline LL Getl(LL x){
node tmp; tmp.p=x;
return lower_bound(a+1,a+1+K,tmp)-a;
}
inline LL Getr(LL x){
node tmp; tmp.p=x;
return upper_bound(a+1,a+1+K,tmp)-a-1;
}
inline LL Query1(LL l,LL r){
if(l>r) swap(l,r); l=max(1ll,l),r=min(n,r);
l=Getl(l),r=Getr(r);
if(l>r) return inf;
LL lg=log2(r-l+1);
return min(st1[l][lg],st1[r-(1<<lg)+1][lg]);
}
inline LL Query2(LL l,LL r){
if(l>r) swap(l,r); l=max(1ll,l),r=min(n,r);
l=Getl(l),r=Getr(r);
if(l>r) return inf;
LL lg=log2(r-l+1);
return min(st2[l][lg],st2[r-(1<<lg)+1][lg]);
}
}ST;
inline bool Check1(LL p,LL x){
if(!(p^x)) return true;
LL lt=ST.Query1(2*x-p+1,x)+dis[x];
LL rt=ST.Query2(x,p-1)-dis[x];
LL now=ST.Query2(p,p)-dis[x];
if(lt<=now||rt<=now) return false;
if(2*x-p>=1) return ST.Query1(2*x-p,2*x-p)+dis[x]>=now;
return true;
}
inline bool Check2(LL p,LL x){
if(!(p^x)) return true;
LL lt=ST.Query1(p+1,x)+dis[x];
LL rt=ST.Query2(x,2*x-p-1)-dis[x];
LL now=ST.Query1(p,p)+dis[x];
if(lt<=now||rt<=now) return false;
if(2*x-p<=n) return ST.Query2(2*x-p,2*x-p)-dis[x]>now;
return true;
}
inline LL Solve1(LL p){
LL l(1),r(p),ret(p);
while(l<=r){
LL mid(l+r>>1);
if(Check1(p,mid)) r=mid-1,ret=mid;
else l=mid+1;
}return ret;
}
inline LL Solve2(LL p){
LL l(p),r(n),ret(p);
while(l<=r){
LL mid(l+r>>1);
if(Check2(p,mid)) l=mid+1,ret=mid;
else r=mid-1;
}return ret;
}
int main(){
n=Read(),q=Read();
for(LL i=2;i<=n;++i)
dis[i]=dis[i-1]+Read();
while(q--){
K=Read();
for(LL i=1;i<=K;++i) a[i]=(node){Read(),Read()};
sort(a+1,a+1+K);
ST.Init();
LL ret(0);
for(LL i=1;i<=K;++i) ret+=(Solve2(a[i].p)-Solve1(a[i].p)+1);
printf("%lld\n",ret);
}return 0;
}
P4501 [ZJOI2018]胖的更多相关文章
- 【BZOJ5308】[ZJOI2018]胖(模拟,ST表,二分)
[BZOJ5308][ZJOI2018]胖(模拟,ST表,二分) 题面 BZOJ 洛谷 题解 首先发现每条\(0\)出发的边都一定会更新到底下的一段区间的点. 考虑存在一条\(0\rightarrow ...
- 5308: [Zjoi2018]胖
5308: [Zjoi2018]胖 链接 分析: 题目转化为一个点可以更新多少个点,一个点可以更新的点一定是一个区间,考虑二分左右端点确定这个区间. 设当前点是x,向右二分一个点y,如果x可以更新到y ...
- 洛谷P4501/loj#2529 [ZJOI2018]胖(ST表+二分)
题面 传送门(loj) 传送门(洛谷) 题解 我们对于每一个与宫殿相连的点,分别计算它会作为多少个点的最短路的起点 若该点为\(u\),对于某个点\(p\)来说,如果\(d=|p-u|\),且在\([ ...
- ZJOI2018 胖 二分 ST表
原文链接https://www.cnblogs.com/zhouzhendong/p/ZJOI2018Day2T2.html 题目传送门 - BZOJ5308 题目传送门 - LOJ2529 题目传送 ...
- [ZJOI2018]胖
嘟嘟嘟 都说这题是送分题,但我怎么就不觉得的呢. 看来我还是太弱了啊-- 大体思路就是对于每一个设计方案,答案就是每一个关键点能更新的点的数量之和. 关键在于怎么求一个关键点能更新那些点. 首先这些点 ...
- zjoi[ZJOI2018]胖
题解: 因为n,m很大 所以复杂度应该是和m相关的 考虑到每个点的影响区间是连续的 就很简单了 区间查询最小值线段树维护(st表也可以) 然后注意一下不要重复算一个就可以了 max函数用templat ...
- 2019.03.04 bzoj5308: [Zjoi2018]胖(二分答案+st表)
传送门 想题5分钟调题两小时系列 其实还是我tcl 读完题之后自然会知道一个关键点能够更新的点是一段连续的区间,于是我们对于每个点能到的左右区间二分答案,用ststst表维护一下查询即可. 代码: # ...
- BZOJ5308 ZJOI2018胖
贝尔福特曼(?)的方式相当于每次将所有与源点直接相连的点的影响区域向两边各扩展一格.显然每个点在过程中最多更新其他点一次且这些点构成一段连续区间.这个东西二分st表查一下就可以了.注意某一轮中两点都更 ...
- bzoj 5308: [Zjoi2018]胖
Description Cedyks是九条可怜的好朋友(可能这场比赛公开以后就不是了),也是这题的主人公. Cedyks是一个富有的男孩子.他住在著名的ThePLace(宫殿)中. Cedyks是一个 ...
随机推荐
- java -- 路径中包含空格怎么处理
@.使用toURI()方法 String rootPath = this.getClass().getClassLoader().getResource(".").toURI(). ...
- Linux Linux系统管理命令
df 检测文件系统的磁盘空间占用和空余情况 --用于检测文件系统的磁盘空间占用和空余情况,可以显示所有文件系统对接点和磁盘块的使用情况 --df [参数] --常用参数及含义 "-a&quo ...
- 图谱论(Spectral Graph Theory)基础
拉普拉斯矩阵(Laplacian matrix),也称为导纳矩阵(Admittance matrix)或者基尔霍夫矩阵(Kirchohoff matrix) 归一化的拉普拉斯矩阵定义为 例子: 拉普拉 ...
- Eclipse 编译项目
Eclipse 编译项目 编译 Java 项目 一个项目可以关联多个编译器. java 项目关联的是 java 编译器.可以通过以下方式来查看项目关联的编译器: 在 Package Explorer ...
- What is special about /dev/tty?
ls -la /dev/tty shows the output: crw-rw-rw- 1 root tty 5, 0 Dec 14 22:21 /dev/tty The 'c' means it' ...
- OpenCV学习笔记十三:opencv_videostab模块
一,简介: 该库用于视频稳像.
- 46、PopWindow工具类
<?xml version="1.0" encoding="utf-8"?> <shape xmlns:android="http: ...
- 16进制 ,Color,Colour转换
import java.awt.Color; import jxl.format.Colour; public class ColorUtil { public static Colour getNe ...
- JQUERY实现的小巧简洁的无限级树形菜单
JQUERY实现的小巧简洁的无限级树形菜单,可用于后台或前台侧栏菜单!兼容性也比较好. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tra ...
- Youth Is Not a Time of Life
Youth is not a time of life; it is a state of mind.青春不是年华,而是心境: It is not a matter of rosy cheeks, r ...