C. Coloring Trees
time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input

The first line contains three integers, n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color j. pi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output

Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Examples
Input
3 2 2
0 0 0
1 2
3 4
5 6
Output
10
Input
3 2 2
2 1 2
1 3
2 4
3 5
Output
-1
Input
3 2 2
2 0 0
1 3
2 4
3 5
Output
5
Input
3 2 3
2 1 2
1 3
2 4
3 5
Output
0
Note

In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).

In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is  - 1.

In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.

题目连接:http://codeforces.com/contest/711/problem/C


题意:有n棵树,m种染料。从1到n给未染色的树染色。第i棵树染第ci种色。ci=0表示第i棵树未染色。pi,j表示第i棵树染第j种颜色需要花费的价值。求出1到n全部染色需要花费最少的价值,必须保证有k段颜色。

思路:动态规划。dp[i][j][t]表示前i棵树,第i棵树染第j中染色,有t段颜色的最少花费。如果当前选择的颜色与上一棵树的不同t+1,相同t不变。


代码:

 #include<iostream>
#include<cstdio>
using namespace std;
const __int64 INF=1e12;
__int64 c[],p[][],dp[][][];
int main()
{
int i,j,t,h,n,m,k;
scanf("%d%d%d",&n,&m,&k);
for(i=; i<=n; i++) scanf("%I64d",&c[i]);
for(i=; i<=n; i++)
for(j=; j<=m; j++)
scanf("%I64d",&p[i][j]);
if(k>n)
{
cout<<"-1"<<endl;
return ;
}
for(i=; i<=n; i++)
for(j=; j<=m; j++)
for(t=; t<=n; t++)
dp[i][j][t]=INF;
if(c[]==)
for(j=; j<=m; j++)
dp[][j][]=p[][j];
else dp[][c[]][]=;
for(i=; i<=n; i++)
{
if(c[i]==)
{
for(j=; j<=m; j++)
for(t=; t<=i; t++)
for(h=; h<=m; h++)
{
if(j==h)
dp[i][j][t]=min(dp[i][j][t],dp[i-][h][t]+p[i][j]);
else
dp[i][j][t]=min(dp[i][j][t],dp[i-][h][t-]+p[i][j]);
}
}
else
{
for(t=; t<=i; t++)
for(h=; h<=m; h++)
{
if(c[i]==h)
dp[i][c[i]][t]=min(dp[i][c[i]][t],dp[i-][h][t]);
else
dp[i][c[i]][t]=min(dp[i][c[i]][t],dp[i-][h][t-]);
}
}
}
__int64 ans=INF;
for(j=; j<=m; j++)
ans=min(ans,dp[n][j][k]);
if(ans==INF) cout<<"-1"<<endl;
else printf("%I64d\n",ans);
return ;
}

Codeforces 677C. Coloring Trees dp的更多相关文章

  1. CodeForces 711C Coloring Trees (DP)

    题意:给定n棵树,其中有一些已经涂了颜色,然后让你把没有涂色的树涂色使得所有的树能够恰好分成k组,让你求最少的花费是多少. 析:这是一个DP题,dp[i][j][k]表示第 i 棵树涂第 j 种颜色恰 ...

  2. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

  3. CodeForces #369 C. Coloring Trees DP

    题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少.   K:连续的颜色为一组 ...

  4. codeforces 711C C. Coloring Trees(dp)

    题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  5. C. Coloring Trees DP

    传送门:http://codeforces.com/problemset/problem/711/C 题目: C. Coloring Trees time limit per test 2 secon ...

  6. codeforces 711C Coloring Trees(DP)

    题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...

  7. Codeforces 711 C. Coloring Trees (dp)

    题目链接:http://codeforces.com/problemset/problem/711/C 给你n棵树,m种颜色,k是指定最后的完美值.接下来一行n个数 表示1~n树原本的颜色,0的话就是 ...

  8. 【动态规划】Codeforces 711C Coloring Trees

    题目链接: http://codeforces.com/problemset/problem/711/C 题目大意: 给N棵树,M种颜色,已经有颜色的不能涂色,没颜色为0,可以涂色,每棵树I涂成颜色J ...

  9. CodeForces 711C Coloring Trees

    简单$dp$. $dp[i][j][k]$表示:前$i$个位置染完色,第$i$个位置染的是$j$这种颜色,前$i$个位置分成了$k$组的最小花费.总复杂度$O({n^4})$. #pragma com ...

随机推荐

  1. linux 常规操作EOF写法梳理

    在平时的运维工作中,我们经常会碰到这样一个场景:执行脚本的时候,需要往一个文件里自动输入N行内容.如果是少数的几行内容,还可以用echo追加方式,但如果是很多行,那么单纯用echo追加的方式就显得愚蠢 ...

  2. convolution-卷积神经网络

    训练mnist数据集 结构组成: input_image --> convolution1 --> pool1 --> convolution2 --> pool2 --> ...

  3. centos7.3使用squid搭建代理服务器

    centos7.3使用squid搭建代理服务器 1 安装 yum install squid 2 编辑 vi /etc/squid/squid.conf 3 设置 最底部增加 如下http_acces ...

  4. memcache.so的报错信息,未解决

    memcache.so php版本5.6 executor_globals_id in Unknown on line 0 编译也成功了,路径也是在其他so文件的目录 但是加载失败的,查看apache ...

  5. 练手THINKPHP5过程和bootstrap3.3.7

    1 在GIT上下载了最新版的源码,同时安装composer 用composer更新 git地址https://github.com/top-think/think 2 搭建本地开发环境,开启url重写 ...

  6. c#面向对象基础3

    静态与非静态的区别 (1)在非静态类中既可以有实例成员,也可以有静态成员(static修饰). (2)在调用静态成员的时候要使用:对象名.实例成员. (3)在调用静态成员的时候要使用:类名.静态成员. ...

  7. Mysql 函数, 存储过程, 任务调度

    官网链接:   https://dev.mysql.com/doc/refman/5.7/en/stored-programs-views.html

  8. Oracle+Mybatis批量插入,更新和删除

    1.插入 (1)第一种方式:利用<foreach>标签,将入参的list集合通过UNION ALL生成虚拟数据,从而实现批量插入(验证过) <insert id="inse ...

  9. v​n​c​服​务​​安​装​与配置

    一.Redhat上VNC Server配置 本文以当前Linux系统未安装VNC服务器为基本,如果已安装请跳过第1节! 前提: 1.安装 TigerVNC Server # yum search ti ...

  10. Object-c 创建按钮

    @implementation ViewController - (void)viewDidLoad { [super viewDidLoad]; //动态创建我们自己的按钮 //1.创建按钮(UIB ...