///stl_slist.h

///list为双向循环链表,slist为单向链表。某些操作效率更高

///slist是SGI额外提供的单向链表,不属于C++标准

struct _Slist_node_base
{
_Slist_node_base* _M_next;
}; ///将__new_node链在__prev_node后面
inline _Slist_node_base*
__slist_make_link(_Slist_node_base* __prev_node,
_Slist_node_base* __new_node)
{
__new_node->_M_next = __prev_node->_M_next;
__prev_node->_M_next = __new_node;
return __new_node;
} ///查找__node的前一个结点
inline _Slist_node_base*
__slist_previous(_Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
} inline const _Slist_node_base*
__slist_previous(const _Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
} ///将(__before_first,__before_last]从原位置摘下来,插入到__pos之后
inline void __slist_splice_after(_Slist_node_base* __pos,
_Slist_node_base* __before_first,
_Slist_node_base* __before_last)
{
if (__pos != __before_first && __pos != __before_last) {
_Slist_node_base* __first = __before_first->_M_next;
_Slist_node_base* __after = __pos->_M_next;
__before_first->_M_next = __before_last->_M_next;
__pos->_M_next = __first;
__before_last->_M_next = __after;
}
} ///将(__head,0)从原位置摘下来,插入__pos之后+
inline void
__slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
{
_Slist_node_base* __before_last = __slist_previous(__head, 0);-
if (__before_last != __head) {
_Slist_node_base* __after = __pos->_M_next;
__pos->_M_next = __head->_M_next;
__head->_M_next = 0;
__before_last->_M_next = __after;
}
} ///从node開始,将整个链表翻转
inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node)
{
_Slist_node_base* __result = __node;
__node = __node->_M_next;
__result->_M_next = 0;
while(__node) {
_Slist_node_base* __next = __node->_M_next;
__node->_M_next = __result; ///将_M_next指向其前一个结点
__result = __node;
__node = __next;
}
return __result;
} ///计算[__node,0)的节点数
inline size_t __slist_size(_Slist_node_base* __node)
{
size_t __result = 0;
for ( ; __node != 0; __node = __node->_M_next)
++__result;
return __result;
} template <class _Tp>
struct _Slist_node : public _Slist_node_base
{
_Tp _M_data;
}; struct _Slist_iterator_base
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef forward_iterator_tag iterator_category; ///前向迭代器 _Slist_node_base* _M_node; _Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
void _M_incr() { _M_node = _M_node->_M_next; } bool operator==(const _Slist_iterator_base& __x) const {
return _M_node == __x._M_node;
}
bool operator!=(const _Slist_iterator_base& __x) const {
return _M_node != __x._M_node;
}
}; template <class _Tp, class _Ref, class _Ptr>
struct _Slist_iterator : public _Slist_iterator_base
{
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef _Slist_iterator<_Tp, _Ref, _Ptr> _Self; typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef _Slist_node<_Tp> _Node; _Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
_Slist_iterator() : _Slist_iterator_base(0) {}
_Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {} reference operator*() const { return ((_Node*) _M_node)->_M_data; }
pointer operator->() const { return &(operator*()); } _Self& operator++()
{
_M_incr();
return *this;
}
_Self operator++(int)
{
_Self __tmp = *this;
_M_incr();
return __tmp;
}
}; inline ptrdiff_t* distance_type(const _Slist_iterator_base&) {
return 0;
} inline forward_iterator_tag iterator_category(const _Slist_iterator_base&) {
return forward_iterator_tag();
} template <class _Tp, class _Ref, class _Ptr>
inline _Tp* value_type(const _Slist_iterator<_Tp, _Ref, _Ptr>&) {
return 0;
} template <class _Tp, class _Alloc>
struct _Slist_base {
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); } _Slist_base(const allocator_type&) { _M_head._M_next = 0; }
~_Slist_base() { _M_erase_after(&_M_head, 0); } ///清空链表 protected:
typedef simple_alloc<_Slist_node<_Tp>, _Alloc> _Alloc_type; _Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); } ///删除__pos->_M_next
_Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
{
_Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
_Slist_node_base* __next_next = __next->_M_next;
__pos->_M_next = __next_next;
destroy(&__next->_M_data);
_M_put_node(__next);
return __next_next;
} _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*); protected:
_Slist_node_base _M_head; ///不存储不论什么数据元素的头结点
}; ///删除(__before_first,__last_node)
template <class _Tp, class _Alloc>
_Slist_node_base*
_Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
_Slist_node_base* __last_node) {
_Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
while (__cur != __last_node) {
_Slist_node<_Tp>* __tmp = __cur;
__cur = (_Slist_node<_Tp>*) __cur->_M_next;
destroy(&__tmp->_M_data);
_M_put_node(__tmp);
}
__before_first->_M_next = __last_node;
return __last_node;
} template <class _Tp, class _Alloc = Stl_Default_Alloc>
class slist : private _Slist_base<_Tp,_Alloc>
{
__STL_CLASS_REQUIRES(_Tp, _Assignable); private:
typedef _Slist_base<_Tp,_Alloc> _Base;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type; typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); } private:
typedef _Slist_node<_Tp> _Node;
typedef _Slist_node_base _Node_base;
typedef _Slist_iterator_base _Iterator_base; ///构造一个数据元素为x的结点
_Node* _M_create_node(const value_type& __x) {
_Node* __node = this->_M_get_node();
try {
construct(&__node->_M_data, __x);
__node->_M_next = 0;
}catch(...){
this->_M_put_node(__node);
} return __node;
} _Node* _M_create_node() {
_Node* __node = this->_M_get_node();
try {
construct(&__node->_M_data);
__node->_M_next = 0;
}catch(...){
this->_M_put_node(__node);
} return __node;
} public:
explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {} slist(size_type __n, const value_type& __x,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_fill(&this->_M_head, __n, __x); } explicit slist(size_type __n) : _Base(allocator_type())
{ _M_insert_after_fill(&this->_M_head, __n, value_type()); } /// We don't need any dispatching tricks here, because _M_insert_after_range
/// already does them.
template <class _InputIterator>
slist(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&this->_M_head, __first, __last); } slist(const slist& __x) : _Base(__x.get_allocator())
{ _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); } slist& operator= (const slist& __x); ~slist() {} ///善后留给基类析构函数 public: void assign(size_type __n, const _Tp& __val)
{ _M_fill_assign(__n, __val); } void _M_fill_assign(size_type __n, const _Tp& __val); template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
} template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); } template <class _InputIterator>
void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type); public: iterator begin() { return iterator((_Node*)this->_M_head._M_next); }
const_iterator begin() const
{ return const_iterator((_Node*)this->_M_head._M_next);} iterator end() { return iterator(0); }
const_iterator end() const { return const_iterator(0); } /// Experimental new feature: before_begin() returns a
/// non-dereferenceable iterator that, when incremented, yields
/// begin(). This iterator may be used as the argument to
/// insert_after, erase_after, etc. Note that even for an empty
/// slist, before_begin() is not the same iterator as end(). It
/// is always necessary to increment before_begin() at least once to
/// obtain end().
iterator before_begin() { return iterator((_Node*) &this->_M_head); }
const_iterator before_begin() const
{ return const_iterator((_Node*) &this->_M_head); } size_type size() const { return __slist_size(this->_M_head._M_next); } size_type max_size() const { return size_type(-1); } bool empty() const { return this->_M_head._M_next == 0; } ///交换指针完毕
void swap(slist& __x)
{ __STD::swap(this->_M_head._M_next, __x._M_head._M_next); } public: reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; }
const_reference front() const
{ return ((_Node*) this->_M_head._M_next)->_M_data; } void push_front(const value_type& __x) {
__slist_make_link(&this->_M_head, _M_create_node(__x));
}
void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); } void pop_front() {
_Node* __node = (_Node*) this->_M_head._M_next;
this->_M_head._M_next = __node->_M_next;
destroy(&__node->_M_data);
this->_M_put_node(__node);
} iterator previous(const_iterator __pos) {
return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node));
}
const_iterator previous(const_iterator __pos) const {
return const_iterator((_Node*) __slist_previous(&this->_M_head,
__pos._M_node));
} private:
_Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
} _Node* _M_insert_after(_Node_base* __pos) {
return (_Node*) (__slist_make_link(__pos, _M_create_node()));
} ///在__pos之后插入__n个数据值为__x的结点
void _M_insert_after_fill(_Node_base* __pos,
size_type __n, const value_type& __x) {
for (size_type __i = 0; __i < __n; ++__i)
__pos = __slist_make_link(__pos, _M_create_node(__x));
} /// Check whether it's an integral type. If so, it's not an iterator.
template <class _InIter>
void _M_insert_after_range(_Node_base* __pos,
_InIter __first, _InIter __last) {
typedef typename _Is_integer<_InIter>::_Integral _Integral;
_M_insert_after_range(__pos, __first, __last, _Integral());
} template <class _Integer>
void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
__true_type) {
_M_insert_after_fill(__pos, __n, __x);
} ///在__pos之后插入[__first,__last)之间的值
template <class _InIter>
void _M_insert_after_range(_Node_base* __pos,
_InIter __first, _InIter __last,
__false_type) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
} public: iterator insert_after(iterator __pos, const value_type& __x) {
return iterator(_M_insert_after(__pos._M_node, __x));
} iterator insert_after(iterator __pos) {
return insert_after(__pos, value_type());
} void insert_after(iterator __pos, size_type __n, const value_type& __x) {
_M_insert_after_fill(__pos._M_node, __n, __x);
} /// We don't need any dispatching tricks here, because _M_insert_after_range
/// already does them.
template <class _InIter>
void insert_after(iterator __pos, _InIter __first, _InIter __last) {
_M_insert_after_range(__pos._M_node, __first, __last);
}
///因为slist是单向链表,因此多採用insert_after来实现插入
///提供的insert函数也实现找到插入位置的前驱结点,然后调用insert_after来实现的
iterator insert(iterator __pos, const value_type& __x) {
return iterator(_M_insert_after(__slist_previous(&this->_M_head,
__pos._M_node),
__x));
} iterator insert(iterator __pos) {
return iterator(_M_insert_after(__slist_previous(&this->_M_head,
__pos._M_node),
value_type()));
} void insert(iterator __pos, size_type __n, const value_type& __x) {
_M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
__n, __x);
} /// We don't need any dispatching tricks here, because _M_insert_after_range
/// already does them.
template <class _InIter>
void insert(iterator __pos, _InIter __first, _InIter __last) {
_M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
__first, __last);
} public:
iterator erase_after(iterator __pos) {
return iterator((_Node*) this->_M_erase_after(__pos._M_node));
}
iterator erase_after(iterator __before_first, iterator __last) {
return iterator((_Node*) this->_M_erase_after(__before_first._M_node,
__last._M_node));
} ///因为slist是单向链表,因此多採用erase_after来实现删除
///提供的erase函数也实现找到删除位置的前驱结点,然后调用erase_after来实现的
iterator erase(iterator __pos) {
return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head,
__pos._M_node));
}
iterator erase(iterator __first, iterator __last) {
return (_Node*) this->_M_erase_after(
__slist_previous(&this->_M_head, __first._M_node), __last._M_node);
} void resize(size_type new_size, const _Tp& __x);
void resize(size_type new_size) { resize(new_size, _Tp()); }
void clear() { this->_M_erase_after(&this->_M_head, 0); } public:
/// Moves the range (__before_first, __before_last ] to *this,
/// inserting it immediately after __pos. This is constant time.
void splice_after(iterator __pos,
iterator __before_first, iterator __before_last)
{
if (__before_first != __before_last)
__slist_splice_after(__pos._M_node, __before_first._M_node,
__before_last._M_node);
} /// Moves the element that follows __prev to *this, inserting it immediately
/// after __pos. This is constant time.
void splice_after(iterator __pos, iterator __prev)
{
__slist_splice_after(__pos._M_node,
__prev._M_node, __prev._M_node->_M_next);
} /// Removes all of the elements from the list __x to *this, inserting
/// them immediately after __pos. __x must not be *this. Complexity:
/// linear in __x.size().
void splice_after(iterator __pos, slist& __x)
{
__slist_splice_after(__pos._M_node, &__x._M_head);
} /// Linear in distance(begin(), __pos), and linear in __x.size().
void splice(iterator __pos, slist& __x) {
if (__x._M_head._M_next)
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
&__x._M_head, __slist_previous(&__x._M_head, 0));
} /// Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
void splice(iterator __pos, slist& __x, iterator __i) {
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __i._M_node),
__i._M_node);
} /// Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
/// and in distance(__first, __last).
void splice(iterator __pos, slist& __x, iterator __first, iterator __last)
{
if (__first != __last)
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __first._M_node),
__slist_previous(__first._M_node, __last._M_node));
} public:
void reverse() {
if (this->_M_head._M_next)
this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
} void remove(const _Tp& __val);
void unique();
void merge(slist& __x);
void sort(); template <class _Predicate>
void remove_if(_Predicate __pred); template <class _BinaryPredicate>
void unique(_BinaryPredicate __pred); template <class _StrictWeakOrdering>
void merge(slist&, _StrictWeakOrdering); template <class _StrictWeakOrdering>
void sort(_StrictWeakOrdering __comp); }; template <class _Tp, class _Alloc>
slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x)
{
if (&__x != this) { _Node_base* __p1 = &this->_M_head;
_Node* __n1 = (_Node*) this->_M_head._M_next;
const _Node* __n2 = (const _Node*) __x._M_head._M_next; while (__n1 && __n2) {
__n1->_M_data = __n2->_M_data;
__p1 = __n1; ///赋值过程中记录前一个节点指针,方便后面的处理
__n1 = (_Node*) __n1->_M_next;
__n2 = (const _Node*) __n2->_M_next;
} if (__n2 == 0)
this->_M_erase_after(__p1, 0);
else
_M_insert_after_range(__p1, const_iterator((_Node*)__n2),
const_iterator(0));
}
return *this;
} template <class _Tp, class _Alloc>
void slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) { _Node_base* __prev = &this->_M_head;
_Node* __node = (_Node*) this->_M_head._M_next; for ( ; __node != 0 && __n > 0 ; --__n) {
__node->_M_data = __val;
__prev = __node;
__node = (_Node*) __node->_M_next;
} if (__n > 0)
_M_insert_after_fill(__prev, __n, __val);
else
this->_M_erase_after(__prev, 0);
} template <class _Tp, class _Alloc> template <class _InputIter>
void
slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first, _InputIter __last,
__false_type)
{
_Node_base* __prev = &this->_M_head;
_Node* __node = (_Node*) this->_M_head._M_next; while (__node != 0 && __first != __last) {
__node->_M_data = *__first;
__prev = __node;
__node = (_Node*) __node->_M_next;
++__first;
} if (__first != __last)
_M_insert_after_range(__prev, __first, __last);
else
this->_M_erase_after(__prev, 0);
} template <class _Tp, class _Alloc>
inline bool
operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
{
typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
const_iterator __end1 = _SL1.end();
const_iterator __end2 = _SL2.end(); const_iterator __i1 = _SL1.begin();
const_iterator __i2 = _SL2.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
++__i1;
++__i2;
} return __i1 == __end1 && __i2 == __end2;
} template <class _Tp, class _Alloc>
inline bool
operator<(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
{
return lexicographical_compare(_SL1.begin(), _SL1.end(),
_SL2.begin(), _SL2.end());
} template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x)
{
_Node_base* __cur = &this->_M_head;
while (__cur->_M_next != 0 && __len > 0) {
--__len;
__cur = __cur->_M_next;
}
if (__cur->_M_next)
this->_M_erase_after(__cur, 0);
else
_M_insert_after_fill(__cur, __len, __x);
} template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::remove(const _Tp& __val)
{
_Node_base* __cur = &this->_M_head;
while (__cur && __cur->_M_next) { if (((_Node*) __cur->_M_next)->_M_data == __val) ///比較下一个结点的值和val是否相等
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
} template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::unique()
{
_Node_base* __cur = this->_M_head._M_next;
if (__cur) {
while (__cur->_M_next) { if (((_Node*)__cur)->_M_data == ((_Node*)(__cur->_M_next))->_M_data)
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
} template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x)
{
_Node_base* __n1 = &this->_M_head;
while (__n1->_M_next && __x._M_head._M_next) { if (((_Node*) __x._M_head._M_next)->_M_data <
((_Node*) __n1->_M_next)->_M_data) __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
} if (__x._M_head._M_next) {
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
} ///和list採用同样的算法
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::sort()
{
if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty()) {
__slist_splice_after(&__carry._M_head,
&this->_M_head, this->_M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
} for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1]);
this->swap(__counter[__fill-1]);
}
} template <class _Tp, class _Alloc>
template <class _Predicate>
void slist<_Tp,_Alloc>::remove_if(_Predicate __pred)
{
_Node_base* __cur = &this->_M_head;
while (__cur->_M_next) {
if (__pred(((_Node*) __cur->_M_next)->_M_data))
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
} template <class _Tp, class _Alloc> template <class _BinaryPredicate>
void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred)
{
_Node* __cur = (_Node*) this->_M_head._M_next;
if (__cur) {
while (__cur->_M_next) {
if (__pred(((_Node*)__cur)->_M_data,
((_Node*)(__cur->_M_next))->_M_data))
this->_M_erase_after(__cur);
else
__cur = (_Node*) __cur->_M_next;
}
}
} template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x,
_StrictWeakOrdering __comp)
{
_Node_base* __n1 = &this->_M_head;
while (__n1->_M_next && __x._M_head._M_next) {
if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
((_Node*) __n1->_M_next)->_M_data))
__slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
}
if (__x._M_head._M_next) {
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
} template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp)
{
if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty()) {
__slist_splice_after(&__carry._M_head,
&this->_M_head, this->_M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry, __comp);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
} for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1], __comp);
this->swap(__counter[__fill-1]);
}
}

C++STL源代码学习(之slist篇)的更多相关文章

  1. C++ STL源代码学习之算法篇

    ///因为篇幅太长,因此,删去了非常多接口,仅仅分析了内部实现,算法对迭代器的要求也被删去 /// search. template <class _ForwardIter1, class _F ...

  2. C++ STL 源代码学习(之deque篇)

    stl_deque.h /** Class invariants: * For any nonsingular iterator i: * i.node is the address of an el ...

  3. C++ STL源代码学习(map,set内部heap篇)

    stl_heap.h ///STL中使用的是大顶堆 /// Heap-manipulation functions: push_heap, pop_heap, make_heap, sort_heap ...

  4. C++ STL源代码学习(list篇)

    ///STL list为双向循环链表 struct _List_node_base { _List_node_base* _M_next; _List_node_base* _M_prev; }; t ...

  5. STL源代码学习(vector篇)

    #include <concept_checks.h> #include<stl_allocate.h> /// The vector base class's constru ...

  6. STL源代码学习--vector用法汇总

    一.容器vector 使用vector你必须包含头文件<vector>: #include<vector> 型别vector是一个定义于namespace std内的templ ...

  7. 一步步学习javascript基础篇(3):Object、Function等引用类型

    我们在<一步步学习javascript基础篇(1):基本概念>中简单的介绍了五种基本数据类型Undefined.Null.Boolean.Number和String.今天我们主要介绍下复杂 ...

  8. Python3学习(1)-基础篇

    Python3学习(1)-基础篇 Python3学习(2)-中级篇 Python3学习(3)-高级篇 安装(MAC) 直接运行: brew install python3 输入:python3 --v ...

  9. struts2源代码学习之初始化(一)

    看struts2源代码已有一段时日,从今天開始,就做一个总结吧. 首先,先看看怎么调试struts2源代码吧,主要是下面步骤: 使用Myeclipse创建一个webproject 导入struts2须 ...

随机推荐

  1. JS中精选this关键字的指向规律你记住了吗

      1.首先要明确:           谁最终调用函数,this指向谁           this指向的永远只可能是对象!!!!!          this指向谁永远不取决于this写在哪,而取 ...

  2. node模拟socket

    什么是Socket?网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. Socket通信流程 基于net模块实现socket 服务端SocketServer.j ...

  3. windows环境下的heap spray+stack pivot gadget 实现绕过dep

    ASLR+DEP是windows平台下最为常见的两种保护手段.这两种手段使得最基础的jmp esp等手法不再适用,而单纯的堆喷也会因为堆内存不可执行而失效.那么这里就来介绍一下heap spray+s ...

  4. 如何适配处理iphoneX底部的横条 - ios

    iphoneX手机取消了实体Home键,取而代之的是主界面底部不显眼的横条“Home Indicator”.当网页底部fixed 元素时候,一部分元素可能就被这个横条遮挡住,怎么适配解决呢? 第一步: ...

  5. zabbix监控华为服务器硬件状态

    https://blog.csdn.net/yanggd1987/article/details/79424823

  6. Web前端开发最佳实践系列文章汇总

    Web前端开发最佳实践(1):前端开发概述 Web前端开发最佳实践(2):前端代码重构 Web前端开发最佳实践(3):前端代码和资源的压缩与合并 Web前端开发最佳实践(4):在页面中添加必要的met ...

  7. Hadoop自定义类型处理手机上网日志

    job提交源码分析 在eclipse中的写的代码如何提交作业到JobTracker中的哪?(1)在eclipse中调用的job.waitForCompletion(true)实际上执行如下方法 con ...

  8. Redis的一些配置

    Redis的一些配置 daemonize 如果需要在后台运行,把该项设置为yes,默认为no pidfile 配置多个pid的地址,默认在/var/run/redis.pid bind 绑定ip,设置 ...

  9. OSPF详解

    OSPF 详解 (1) [此博文包含图片] (2013-02-04 18:02:33) 转载 ▼ 标签: 端的 第二 以太 第一个 正在 目录 序言 初学乍练 循序渐进学习OSPF 朱皓 入门之前 了 ...

  10. Stringbuilder & Stringbuffer

    StringBuilder和StringBuffer的父类都是继承了 AbstractStringBuilder, 他们各自的append方法都是调用了 super.append(str), 但是一个 ...