逻辑回归代价函数(损失函数)的几个求导特性

1.对于sigmoid函数

2、对于以下函数

3.线性回归与逻辑回归的神经网络图表示

利用Numpy向量化运算与for循环运算的显著差距

 import numpy as np
 import time
 ar = np.array([[1,2,3],[4,5,6]]
 a1 = np.random.rand(10000000)
 a2 = np.random.rand(10000000)
 t1 = time.time()
 np.dot(a1,a2)
 c = 0
 t2 = time.time()
 for i in range(10000000):
     c = a1[i]*a2[i]
 t3 = time.time()
 print("向量化计算千万组数字乘积之和的时间为:%.4f ms"%((t2-t1)*1000))
 print("for循环计算千万组数字乘积之和的时间为:%.4f ms"%((t3-t2)*1000))

实际输出如下(不同电脑数字有些差别),

向量化计算千万组数字乘积之和的时间为:20.9358 ms
for循环计算千万组数字乘积之和的时间为:4819.0944 ms

Numpy初步熟悉

numpy官方说明:https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html#general-broadcasting-rules

注意点

1、变量的输入采用列向量约定格式n*m的格式即每一列代表一个样本(机器学习课程当中为m*n)

2、逻辑回归的表达式与机器学习里面的课程不一致(机器学习课程用θ*X表示z)

3.梯度下降

补充知识

RGB色彩模式

——工业界的一种颜色标准,是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红、绿、蓝三个通道的颜色,RGB各有256级亮度,用数字表示为从0、1、2...直到255(计算机保存图片需要三个独立矩阵),白色:rgb(255,255,255),黑色:rgb(0,0,0)。

常见RGB格式如下

RGB565:16个bit表示一个像素,5个bit表示R(红色),6个bit表示G(绿色),5个bit表示B(蓝色)

RGB555:

用16个bit表示一个像素,其中最高位不用,R(红色), G(绿色), B(蓝色)都用5个bit来表示,从高位到低位排列如下: X R R R R R G G G G G B B B B B

RGB24:

用24个bit表示一个像素,R(红色), G(绿色), B(蓝色)都用8个bit来表示,从高位到低位排列如下: R R R R R R R R G G G G G G G G B B B B B B B B

RGB32(RGBA):

用32个bit表示一个像素,R(红色), G(绿色), B(蓝色)都用8个bit来表示,然后用8个bit来表示alpha(透明度),从高位到低位排列如下: B B B B B B B B G G G G G G G G R R R R R R R R A A A A A A A A

常见颜色配置表:https://blog.csdn.net/ghevinn/article/details/44062577

SIMD单指令流多数据流

(SingleInstruction Multiple Data,SIMD)是一种采用一个控制器来控制多个处理器,同时对一组数据(又称“数据向量”)中的每一个分别执行相同的操作从而实现空间上的并行性的技术。单指令单数据(SISD)的CPU对加法指令译码后,执行部件先访问内存,取得第一个操作数;之后再一次访问内存,取得第二个操作数;随后才能进行求和运算。而在SIMD型的CPU中,指令译码后几个执行部件同时访问内存,一次性获得所有操作数进行运算。这个特点使SIMD特别适合于多媒体应用等数据密集型运算。

链式法则

吴恩达 Deep learning 第二周 神经网络基础的更多相关文章

  1. 吴恩达 Deep learning 第一周 深度学习概论

    知识点 1. Relu(Rectified Liner Uints 整流线性单元)激活函数:max(0,z) 神经网络中常用ReLU激活函数,与机器学习课程里面提到的sigmoid激活函数相比有以下优 ...

  2. Coursera-AndrewNg(吴恩达)机器学习笔记——第二周

    一.多变量线性回归问题(linear regression with multiple variables) 搭建环境OctaveWindows的安装包可由此链接获取:https://ftp.gnu. ...

  3. 吴恩达Machine Learning 第一周课堂笔记

    1.Introduction 1.1 Example        - Database mining        Large datasets from growth of automation/ ...

  4. Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业

    一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...

  5. Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业(线性回归)

    一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...

  6. cousera 深度学习 吴恩达 第一课 第二周 学习率对优化结果的影响

    本文代码实验地址: https://github.com/guojun007/logistic_regression_learning_rate cousera 上的作业是 编写一个 logistic ...

  7. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记

    第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...

  8. 吴恩达课后习题第二课第三周:TensorFlow Introduction

    目录 第二课第三周:TensorFlow Introduction Introduction to TensorFlow 1 - Packages 1.1 - Checking TensorFlow ...

  9. 吴恩达Machine Learning学习笔记(四)--BP神经网络

    解决复杂非线性问题 BP神经网络 模型表示 theta->weights sigmoid->activation function input_layer->hidden_layer ...

随机推荐

  1. [Baltic2014]friends

    嘟嘟嘟 首先想想暴力的做法,枚举加入的字符,然后判断删去这个字符后两个长度为n / 2的字符串是否相等,复杂度O(n2). 所以可以想办法把判断复杂度降低到O(1),那自然就想到hash了.hash是 ...

  2. centos中安装、升级git

    yum install git 若是从老版本升级,则按下面方法.(centos中) 先更新系统sudo yum update     安装依赖的包yum install curl-devel expa ...

  3. Kafka设计解析(十二)Kafka 如何读取offset topic内容 (__consumer_offsets)

    转载自 huxihx,原文链接 Kafka 如何读取offset topic内容 (__consumer_offsets) 众所周知,由于Zookeeper并不适合大批量的频繁写入操作,新版Kafka ...

  4. D. Timetable

    http://codeforces.com/problemset/problem/946/D Ivan is a student at Berland State University (BSU). ...

  5. #leetcode刷题之路50-Pow(x, n)

    实现 pow(x, n) ,即计算 x 的 n 次幂函数.示例 1:输入: 2.00000, 10输出: 1024.00000示例 2:输入: 2.10000, 3输出: 9.26100 #inclu ...

  6. PyCharm编辑HTML文件时输入{%不能自动补全

    在PyCharm编辑HTML文件时输入Django模板语言时,发现录入 {% 不能自动补全. 找了一下,发现 setting 里可以设置 Python Template Languages,选择自己使 ...

  7. echarts显示X轴最后一个lable

    代码: xAxis: [ { axisLabel: { showMaxLabel: true } } ]

  8. day 81 Vue学习一之vue初识

      Vue学习一之vue初识   本节目录 一 Vue初识 二 ES6的基本语法 三 Vue的基本用法 四 xxx 五 xxx 六 xxx 七 xxx 八 xxx 一 vue初识 vue称为渐进式js ...

  9. 在centos6.5下挂载windows共享文件夹

    1.在windows下建立文件夹f:\linux,共享给win下用户username,该用户密码为passwd.该windows系统在局域网中IP为192.168.18.203 2.在centos6. ...

  10. Linux下onvif客户端获取ipc摄像头 获取能力:GetCapabilities

    GetCapabilities:获取能力,主要目的获取设备能力信息(获取媒体服务地址) 鉴权:但是在调用获取设备能力之前是需要鉴权的.ONVIF协议规定,部分接口需要鉴权,部分接口不需要鉴权,在调用需 ...