Alignment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 11707   Accepted: 3730

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height between him and that extremity.

Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of the soldier who has the code k (1 <= k <= n).

There are some restrictions: 

• 2 <= n <= 1000 

• the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

Source

[Submit]   [Go Back]   [Status]   [Discuss]

最近在进行动态规划的专题练习。。。

题意:令到原队列的最少士兵出列后,使得新队列任意一个士兵都能看到左边或者右边的无穷远处。

可以是递增序列。也可以是递减序列。更可以是如下图:

所以这是双向lis问题,刚开始的时候还没想到是lis问题,就按照自己的方法做。结果wa。后来发现有很多bug。。

看了discuss才想到是lis问题。还是练得少呀!!

#include<cstdio>
#include<cstring>
int dp1[1006]; //dp1[i]代表以i结尾的最长上升子序列
int dp2[1006]; //dp2[i]代表以i开始的最长下降子序列
int maxdp[1006]; //maxdp[i]代表以0~i中dp1中的最最大值
double p[1006];
int Max(int a,int b)
{
return a>b?a:b;
}
int main()
{
int n,i,j,mm;
while(scanf("%d",&n)!=EOF)
{
mm = 0;
for(i=1;i<=n;i++)
scanf("%lf",&p[i]);
maxdp[1] = dp1[1] = 1;
maxdp[0] = 0;
for(i=2;i<=n;i++) //两个lis算法
{
dp1[i] = 1;
for(j=1;j<i;j++)
{
if(p[j]<p[i])
dp1[i] = Max(dp1[i],dp1[j]+1); }
maxdp[i] = Max(maxdp[i-1],dp1[i]);
}
dp2[n] = 1;
for(i=n-1;i>=1;i--)
{
dp2[i] = 1;
for(j=n;j>i;j--)
{
if(p[j]<p[i])
dp2[i] = Max(dp2[i],dp2[j]+1); }
mm = Max(mm,maxdp[i]+dp2[i+1]); //把以i前面的上升序列最大值和以i+1结尾的最长下降子序
//列长度加起来和前面对比,这样就是把全部的情况都算了一遍
} printf("%d\n",n-mm);
}
return 0;
}

poj1836 Alignment的更多相关文章

  1. POJ1836 - Alignment(LIS)

    题目大意 一队士兵排成一条直线,问最少出队几个士兵,使得队里的每个士兵都可以看到又端点或者左端点 题解 从左往右搞一遍LIS,然后从右往左搞一遍LIS,然后枚举即可... 代码: #include&l ...

  2. POJ1836 Alignment(LIS)

    题目链接. 分析: 从左向右求一遍LIS,再从右向左求一遍LIS,最后一综合,就OK了. 注意: 有一种特殊情况(详见discuss): 8 3 4 5 1 2 5 4 3 答案是:2 AC代码如下: ...

  3. POJ1836:Alignment(LIS的应用)

    题目链接:http://poj.org/problem?id=1836 题目要求: 给你n个数,判断最少去掉多少个数,从中间往左是递减的序列,往右是递增的序列 需注意的是中间可能为两个相同的值,如 1 ...

  4. Alignment trap 解决方法  【转 结合上一篇

    前几天交叉编译crtmpserver到arm9下.编译通过,但是运行的时候,总是提示Alignment trap,但是并不影响程序的运行.这依然很令人不爽,因为不知道是什么原因引起的,这就像一颗定时炸 ...

  5. ARMLinux下Alignment trap的一些测试 【转自 李迟的专栏 CSDN http://blog.csdn.net/subfate/article/details/7847356

    项目中有时会遇到字节对齐的问题,英文为“Alignment trap”,如果直译,意思为“对齐陷阱”,不过这个说法不太好理解,还是直接用英文来表达. ARM平台下一般是4字节对齐,可以参考文后的给出的 ...

  6. Multiple sequence alignment Benchmark Data set

    Multiple sequence alignment Benchmark Data set 1. 汇总: 序列比对标准数据集: http://www.drive5.com/bench/ This i ...

  7. POJ 1836 Alignment

    Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 11450 Accepted: 3647 Descriptio ...

  8. cf.295.C.DNA Alignment(数学推导)

    DNA Alignment time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  9. Alignment

    Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14547 Accepted: 4718 Descriptio ...

随机推荐

  1. js中怎么写自执行函数

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  2. RNN LSTM 介绍

    [RNN以及LSTM的介绍和公式梳理]http://blog.csdn.net/Dark_Scope/article/details/47056361 [知乎 对比 rnn  lstm  简单代码] ...

  3. XtraBackup 备份原理

    来着淘宝技术: http://mysql.taobao.org/monthly/2016/03/07/ https://github.com/alibaba/AliSQL 前言 Percona Xtr ...

  4. Electron 的解释, 什么是Electron

    https://wizardforcel.gitbooks.io/electron-doc/content/development/build-instructions-windows.html

  5. frm和ibd恢复sql文件的操作

    情况:有mysql中data文件(仅仅一个数据库) 操作:frm和ibd恢复sql文件的操作 1.创建相同名字的库xxx 2.把ibdata1替换成原来的 3.把数据库xxx内内容全部替换为原来的 完 ...

  6. IllegalArgumentException: Could not resolve resource location pattern [classpath .xml]: class path resource cannot be resolved to URL because it does not exist

    查看编译后的classes文件后,没有mapper.xml文件,所以SQLsessionfactory不能读取成功. 在Maven中加入如下的resources配置: <dependencies ...

  7. kwic--Java统计单词个数并按照顺序输出

    2016-07-02(随笔写作时间) 写了好久的程序了为了避免以后用到.......... 是一个统计单词个数,并按照个数从大到小输出的.输入文件名OK 了 单词是按照首字母排序的,,,里面用到映射等 ...

  8. Gridview中 LinkButton删除以及自带删除

    <asp:LinkButton ID="lbtnDel" OnClientClick="return confirm('删除新闻会连同其下评论一起删除,是否删除?' ...

  9. js variable 变量

    局部作用域 由于JavaScript的变量作用域实际上是函数内部,我们在for循环等语句块中是无法定义具有局部作用域的变量的: 'use strict'; function foo() { for ( ...

  10. centos7 二进制安装包安装 mysql5.6

    centos7 二进制安装包安装 mysql5.6 一.下载mysql5.6二进制安装包 http://mirrors.sohu.com/mysql/MySQL-5.6/ 如:mysql-5.6.34 ...