coursera课程Text Retrieval and Search Engines之Week 2 Overview
Week 2 OverviewHelp Center
Week 2
On this page:
- Instructional Activities
- Time
- Goals and Objectives
- Key Phrases/Concepts
- Guiding Questions
- Readings and Resources
- Video Lectures
- Tips for Success
- Getting and Giving Help
Instructional Activities
Below is a list of the activities and assignments available to you this week. See the How to Pass the Class page to know which assignments pertain to the badge or badges you are pursuing. Click on the name of each activity for more detailed instructions.
Relevant Badges | Activity | Due Date* | Estimated Time Required |
---|---|---|---|
Week 2 Video Lectures | Sunday, April 5 (Suggested) |
3 hours | |
![]() ![]() |
Programming Assignment Part 1 | Sunday, April 5 | 2-3 hours |
![]() ![]() |
Week 2 Quiz | Sunday, April 19 | ~0.5 hours |
* All deadlines are at 11:55 PM Central Time (time zone conversion) unless otherwise noted.
Time
This module will last 7 days and should take approximately 6 hours of dedicated time to complete, with its readings and assignments.
Goals and Objectives
After you actively engage in the learning experiences in this module, you should be able to:
- Explain what an inverted index is and how to construct it for a large set of text documents that do not fit into the memory.
- Explain how variable-length encoding can be used to compress integers and how unary coding and gamma-coding work.
- Explain how scoring of documents in response to a query can be done quickly by using an inverted index.
- Explain what Zipf’s law is.
- Explain what the Cranfield evaluation methodology is and how it works for evaluating a text retrieval system.
- Explain how to evaluate a set of retrieved documents and how to compute precision, recall, and F1.
- Explain how to evaluate a ranked list of documents.
- Explain how to compute and plot a precision-recall curve.
- Explain how to compute average precision and mean average precision (MAP).
- Explain how to evaluate a ranked list with multi-level relevance judgments.
- Explain how to compute normalized discounted cumulative gain.
- Explain why it is important to perform a statistical significance test.
Key Phrases/Concepts
Keep your eyes open for the following key terms or phrases as you complete the readings and interact with the lectures. These topics will help you better understand the content in this module.
- Inverted index; postings
- Binary coding; unary coding; gamma-coding; d-gap
- Zipf’s law
- Cranfield evaluation methodology
- Precision; recall
- Average precision; mean average precision (MAP); geometric mean average precision (gMAP)
- Reciprocal rank; mean reciprocal rank
- F-measure
- Normalized discounted cumulative gain (nDCG)
- Statistical significance test
Guiding Questions
Develop your answers to the following guiding questions while completing the readings and working on assignments throughout the week.
- What is the typical architecture of a text retrieval system?
- What is an inverted index?
- Why is it desirable for compressing an inverted index?
- How can we create an inverted index when the collection of documents does not fit into the memory?
- How can we leverage an inverted index to score documents quickly?
- Why is evaluation so critical for research and application development in text retrieval?
- How does Cranfield evaluation methodology work?
- How do we evaluate a set of retrieved documents?
- How do you compute precision, recall, and F1?
- How do we evaluate a ranked list of search results?
- How do you compute average precision? How do you compute mean average precision (MAP) and geometric mean average precision (gMAP)?
- What is mean reciprocal rank?
- Why is MAP more appropriate than precision at k documents when comparing two retrieval methods?
- Why is precision at k documents more meaningful than average precision from a user’s perspective?
- How can we evaluate a ranked list of search results using multi-level relevance judgments?
- How do you compute normalized discounted cumulative gain (nDCG)?
- Why is normalization necessary in nDCG? Does MAP need a similar normalization?
- Why is it important to perform a statistical significance test when we compare the retrieval accuracies of two search engine systems?
Readings and Resources
The following readings are optional:
- Mark Sanderson. "Test Collection Based Evaluation of Information Retrieval Systems." Foundations and Trends in Information Retrieval 4(4): 247-375 (2010).
- Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images, Second Edition. Morgan Kaufmann, 1999.
Video Lectures
Video Lecture | Lecture Notes | Transcript | Video Download | SRT Caption File | Forum |
---|---|---|---|---|---|
![]() |
(28.3 MB) |
||||
![]() |
(24.4 MB) |
||||
![]() |
(23.0 MB) |
||||
![]() |
(14.1 MB) |
||||
![]() |
(17.3 MB) |
||||
![]() |
(20.5 MB) |
||||
![]() |
(13.8 MB) |
||||
![]() |
(14.3 MB) |
||||
![]() |
(20.8 MB) |
Tips for Success
To do well this week, I recommend that you do the following:
- Review the video lectures a number of times to gain a solid understanding of the key questions and concepts introduced this week.
- When possible, provide tips and suggestions to your peers in this class. As a learning community, we can help each other learn and grow. One way of doing this is by helping to address the questions that your peers pose. By engaging with each other, we’ll all learn better.
- It’s always a good idea to refer to the video lectures and chapter readings we've read during this week and reference them in your responses. When appropriate, critique the information presented.
- Take notes while you read the materials and watch the lectures for this week. By taking notes, you are interacting with the material and will find that it is easier to remember and to understand. With your notes, you’ll also find that it’s easier to complete your assignments. So, go ahead, do yourself a favor; take some notes!
Getting and Giving Help
You can get/give help via the following means:
- Use the Learner Help Center to find information regarding specific technical problems. For example, technical problems would include error messages, difficulty submitting assignments, or problems with video playback. You can access the Help Center by clicking on theHelp Center link at the top right of any course page. If you cannot find an answer in the documentation, you can also report your problem to the Coursera staff by clicking on the Contact Us! link available on each topic's page within the Learner Help Center.
- Use the Content Issues forum to report errors in lecture video content, assignment questions and answers, assignment grading, text and links on course pages, or the content of other course materials. University of Illinois staff and Community TAs will monitor this forum and respond to issues.
As a reminder, the instructor is not able to answer emails sent directly to his account. Rather, all questions should be reported as described above.
from: https://class.coursera.org/textretrieval-001/wiki/Week2Overview
coursera课程Text Retrieval and Search Engines之Week 2 Overview的更多相关文章
- coursera课程Text Retrieval and Search Engines之Week 1 Overview
Week 1 OverviewHelp Center Week 1 On this page: Instructional Activities Time Goals and Objectives K ...
- coursera课程Text Retrieval and Search Engines之Week 3 Overview
Week 3 OverviewHelp Center Week 3 On this page: Instructional Activities Time Goals and Objectives K ...
- coursera课程Text Retrieval and Search Engines之Week 4 Overview
Week 4 OverviewHelp Center Week 4 On this page: Instructional Activities Time Goals and Objectives K ...
- 【Python学习笔记】Coursera课程《Using Databases with Python》 密歇根大学 Charles Severance——Week4 Many-to-Many Relationships in SQL课堂笔记
Coursera课程<Using Databases with Python> 密歇根大学 Week4 Many-to-Many Relationships in SQL 15.8 Man ...
- 【Python学习笔记】Coursera课程《Using Python to Access Web Data》 密歇根大学 Charles Severance——Week6 JSON and the REST Architecture课堂笔记
Coursera课程<Using Python to Access Web Data> 密歇根大学 Week6 JSON and the REST Architecture 13.5 Ja ...
- 【Python学习笔记】Coursera课程《Using Python to Access Web Data 》 密歇根大学 Charles Severance——Week2 Regular Expressions课堂笔记
Coursera课程<Using Python to Access Web Data > 密歇根大学 Charles Severance Week2 Regular Expressions ...
- Coursera课程下载和存档计划[转载]
上周三收到Coursera平台的群发邮件,大意是Coursera将在6月30号彻底关闭旧的课程平台,全面升级到新的课程平台上,一些旧的课程资源(课程视频.课程资料)将不再保存,如果你之前学习过相关的课 ...
- 【网页开发学习】Coursera课程《面向 Web 开发者的 HTML、CSS 与 Javascript》Week1课堂笔记
Coursera课程<面向 Web 开发者的 HTML.CSS 与 Javascript> Johns Hopkins University Yaakov Chaikin Week1 In ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
随机推荐
- WebApi 插件式构建方案:集成加载数据库连接字符串
body { border: 1px solid #ddd; outline: 1300px solid #fff; margin: 16px auto; } body .markdown-body ...
- USACO 6.1 Postal Vans(一道神奇的dp)
Postal Vans ACM South Pacific Region -- 2003 Tiring of their idyllic fields, the cows have moved to ...
- Ubuntu18.04 n卡配置
一.背景 最近安装了ubutnu18.04后,安装系统后重启卡住,强制关机重启后,又在开机界面紫屏卡住,上网搜索后发现是n卡的驱动问题,使用以下方法安装驱动后成功解决该问题. 二.解决方法 1.进入恢 ...
- Java—集合工具类
集合中的元素工具类排序: Java提供了一个操作Set.List和Map等集合的工具类:Collections,该工具类提供了大量方法对集合进行排序.查询和修改等操作,还提供了将集合对象置为不可变.对 ...
- 【基础知识】C#数据库中主键类型的选择
主键在数据库中占有很大的地位,对于表的关联性,和数据的唯一识别性有重要的作用: 1,在C#开发中,Int自增字段和Guid(数据库中是uniqueidentifier类型)可设置为主键: 1>G ...
- 第一次用python,成功的感觉不错。
自己的作业: 1. count = 0 while count <= 9 : count += 1 if count == 7 : continue print (count) 2. count ...
- C# String.Format 格式化字符串 数字/时间
首先献给只想知道结果的人 格式化 DateTime 对象 标准 数字 格式化 Int Decimal Float Double 关于这一块一直不是很清楚,MSDN 上也不够清晰. 就花了点时间敲了一下 ...
- android httpUrlConnection HttpClient
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha httpUrlConnection 超文本传输协议统一资源定位器连接 http 超 ...
- [BZOJ5317][JSOI2018]部落战争(闵可夫斯基和)
对于点集$A$,$B$,闵可夫斯基和$C=\{(x1+x2,y1+y2)|(x1,x2)\in A,(y1,y2)\in B\}$.由此可知,对于两个凸包$A$,$B$的闵可夫斯基和$C$满足,$C$ ...
- zoj 3469 区间dp **
题意:有一家快餐店送外卖,现在同时有n个家庭打进电话订购,送货员得以V-1的速度一家一家的运送,但是每一个家庭都有一个不开心的值,每分钟都会增加一倍,值达到一定程度,该家庭将不会再订购外卖了,现在为了 ...