https://www.luogu.org/problemnew/show/3358

以区间(1,5),(2,6),(7,8)为例

建模方法一:

建模方法二:

离散化区间端点

相当于找k条费用最大的不相交路径

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std; #define N 1011
#define M 3011 typedef long long LL; int h[N]; struct node
{
int l,r;
}e[]; int src,decc; int front[N],to[M<<],nxt[M<<],from[M<<],cnt=;
int cap[M<<];
LL cost[M<<]; LL dis[N];
int path[N]; bool vis[N]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v,int w,int val)
{
to[++cnt]=v; nxt[cnt]=front[u]; front[u]=cnt; from[cnt]=u; cap[cnt]=w; cost[cnt]=val;
to[++cnt]=u; nxt[cnt]=front[v]; front[v]=cnt; from[cnt]=v; cap[cnt]=; cost[cnt]=-val;
} bool spfa()
{
queue<int>q;
memset(dis,,sizeof(dis));
dis[src]=;
vis[src]=true;
q.push(src);
int now;
while(!q.empty())
{
now=q.front();
q.pop();
vis[now]=false;
for(int i=front[now];i;i=nxt[i])
{
if(cap[i]> && dis[to[i]]<dis[now]+cost[i])
{
dis[to[i]]=dis[now]+cost[i];
path[to[i]]=i;
if(!vis[to[i]])
{
q.push(to[i]);
vis[to[i]]=true;
}
}
}
}
return dis[decc]>;
} int main()
{
freopen("interv.in","r",stdin);
freopen("interv.out","w",stdout);
int n,k;
read(n);
read(k);
int tot=;
for(int i=;i<=n;++i)
{
read(e[i].l);
read(e[i].r);
if(e[i].l>e[i].r) swap(e[i].l,e[i].r);
h[++tot]=e[i].l;
h[++tot]=e[i].r;
}
sort(h+,h+tot+);
tot=unique(h+,h+tot+)-h-;
for(int i=;i<=n;++i)
{
e[i].l=lower_bound(h+,h+tot+,e[i].l)-h;
e[i].r=lower_bound(h+,h+tot+,e[i].r)-h;
}
for(int i=;i<tot;++i) add(i,i+,1e9,);
decc=tot+;
add(src,,k,);
add(tot,decc,k,);
for(int i=;i<=n;++i) add(e[i].l,e[i].r,,h[e[i].r]-h[e[i].l]);
LL ans=;
int now,j;
while(spfa())
{
ans+=dis[decc];
now=decc;
while(now!=src)
{
j=path[now];
cap[j]--;
cap[j^]++;
now=from[path[now]];
}
}
cout<<ans;
}

题目描述

对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度。

输入输出格式

输入格式:

的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重迭数。接下来的 n行,每行有 2 个整数,表示开区间的左右端点坐标。

输出格式:

将计算出的最长 k可重区间集的长度输出

输入输出样例

输入样例#1: 复制

4 2
1 7
6 8
7 10
9 13
输出样例#1: 复制

15

说明

对于100%的数据,1\le n\le 5001≤n≤500,1\le k\le 31≤k≤3

[网络流24题] 最长k可重区间集的更多相关文章

  1. COGS743. [网络流24题] 最长k可重区间集

    743. [网络流24题] 最长k可重区间集 ★★★   输入文件:interv.in   输出文件:interv.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: «编 ...

  2. [网络流24题]最长k可重区间集[题解]

    最长 \(k\) 可重区间集 题目大意 给定实心直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取开区间集 ...

  3. [网络流24题] 最长K可重区间集问题

    题目链接:戳我 当时刷24题的时候偷了懒,没有写完,结果落下这道题没有写qwq结果今天考试T3中就有一部分要用到这个思想,蒟蒻我硬是没有想到网络流呜呜呜 最大费用流. 就是我们考虑将问题转化一下,转化 ...

  4. [网络流24题] 最长k可重区间集问题 (费用流)

    洛谷传送门 LOJ传送门 很巧妙的建图啊...刚了$1h$也没想出来,最后看的题解 发现这道题并不类似于我们平时做的网络流题,它是在序列上的,且很难建出来二分图的形. 那就让它在序列上待着吧= = 对 ...

  5. [网络流24题]最长k可重线段集[题解]

    最长 \(k\) 可重线段集 题目大意 给定平面 \(x-O-y\) 上 \(n\) 个开线段组成的集合 \(I\) ,和一个正整数 \(k\) .试设计一个算法,从开线段集合 \(I\) 中选取开线 ...

  6. [网络流24题] 最长k可重线段集问题 (费用流)

    洛谷传送门 LOJ传送门 最长k可重区间集问题的加强版 大体思路都一样的,不再赘述,但有一些细节需要注意 首先,坐标有负数,而且需要开$longlong$算距离 但下面才是重点: 我们把问题放到了二维 ...

  7. 网络流24题-最长k可重线段集问题

    最长k可重线段集问题 时空限制1000ms / 128MB 题目描述 给定平面 x−O−y 上 n 个开线段组成的集合 I,和一个正整数 k .试设计一个算法,从开线段集合 I 中选取出开线段集合 S ...

  8. 【网络流24题】最长k可重区间集(费用流)

    [网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...

  9. LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   ...

随机推荐

  1. A Survey on the Security of Stateful SDN Data Planes

    论文摘要: 本文为读者提供新兴的SDN带状态数据平面,集中关注SDN数据平面编程性带来的隐患. I部分 介绍 A.带状态SDN数据平面的兴起 B.带状态数据平面带来的安全隐患 引出带状态数据平面的安全 ...

  2. alpha阶段总结 (第一阶段冲刺成果)

    首次接触手机APP的制作,虽然很多都不懂,但是在网上查阅相关知识和询问同学的帮助下,我们团队总算对此有相当的了解,但是因为时间问题,首次冲刺的成果不大,我们相信在下一次的冲刺中会给出更好的效果出来. ...

  3. BETA-5

    前言 我们居然又冲刺了·五 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 前一份代码方案全部垮掉,我,重构啦 接下来的计划 加速加速,一定要完成速度模块 ...

  4. python下的Box2d物理引擎的配置

    /******************************* I come back! 由于已经大四了,正在找工作 导致了至今以来第二长的时间内没有更新博客.向大家表示道歉 *********** ...

  5. Promise 记录

  6. date format 参数表

    format 必需.规定输出日期字符串的格式.可使用下列字符: d - 一个月中的第几天(从 01 到 31) D - 星期几的文本表示(用三个字母表示) j - 一个月中的第几天,不带前导零(1 到 ...

  7. C++中的栈内存和堆内存的区别

    数据结构中的堆与栈: 栈:是一种连续储存的数据结构,具有先进后出的性质.通常的操作有入栈(圧栈).出栈和栈顶元素.想要读取栈中的某个元素,就要将其之前的所有元素出栈才能完成.类比现实中的箱子一样. 堆 ...

  8. 开发者应该掌握的Java代码优化技能

    就像鲸鱼吃虾米一样,也许吃一个两个虾米对于鲸鱼来说作用不大,但是吃的虾米多了,鲸鱼自然饱了. 代码优化一样,也许一个两个的优化,对于提升代码的运行效率意义不大,但是只要处处都能注意代码优化,总体来说对 ...

  9. Virtual Table

    C++对象模型——吴泰 C/C++杂记 C++中的虚函数(表)实现机制以及用C语言对其进行的模拟实现 C++ 多继承和虚继承的内存布局 [已翻译100%] (虚继承参考,推荐) 图说C++对象模型:对 ...

  10. 模板:快速傅里叶变换(FFT)

    参考:http://blog.csdn.net/f_zyj/article/details/76037583 如果公式炸了请去我的csdn博客:http://blog.csdn.net/luyouqi ...