【BZOJ2724】蒲公英(分块)
【BZOJ2724】蒲公英(分块)
题面
洛谷
谴责权限题的行为
题解
分块什么的都不会,根本就没写过几次。
复杂度根本不会分析,吓得我赶快来练练。
这题要求的是区间众数,显然没有什么很好的主席树之类的方法。
再加之这个数据范围很像\(O(n\sqrt n)\),所以我们来分块,假设块大小为\(\sqrt n\)。
首先颜色什么的直接离散是没有任何问题的。
那么我们可以考虑分块之后对于每一个颜色在块内的出现次数维护一个前缀和,但是这样子仍然无法快速得出一个颜色在某特定区间的出现次数。所以我们对于每一个颜色维护一个\(vector\),把所有出现的位置按照顺序压进来,这样子每次二分即可。
考虑区间众数是怎么产生的,要么是中间连续整块的众数,要么是区间左右两侧非整块的区间中出现过的数字。
中间连续整块的众数可以预处理,设\(g[i][j]\)表示第\(i\)块到第\(j\)块的众数,显然这个可以固定左端点,然后向右端点推进预处理结果。
对于非整块区间出现的位置,因为最多只会有\(2\sqrt n\)个,所以可以对于每一个数字暴力二分一遍,这样子的复杂度是\(O(\sqrt nlogn)\)的。
看起来复杂度就很对了?\(O(n\sqrt n logn)\),似乎块大小不取\(\sqrt n\)而是取别的值的时候更优秀。(尝试了一堆值,从\(200\)取到了\(20\),发现取\(30\)的时候最优)
我代码常数比较大。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 40040
const int m=30;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,Q,blk,a[MAX],b[MAX];
int S[MAX],tot,num[MAX];
vector<int> p[MAX];
int f[1500][1500];
int Calc(int x,int l,int r)
{
if(p[x].size()==0)return 0;
int L,R,ret1,ret2;
L=0,R=p[x].size()-1,ret1=R;
while(L<=R)
{
int mid=(L+R)>>1;
if(p[x][mid]>=l)ret1=mid,R=mid-1;
else L=mid+1;
}
L=0,R=p[x].size()-1,ret2=L;
while(L<=R)
{
int mid=(L+R)>>1;
if(p[x][mid]<=r)ret2=mid,L=mid+1;
else R=mid-1;
}
return max(ret2-ret1+1,0);
}
int main()
{
n=read();Q=read();blk=(n+m-1)/m;
for(int i=1;i<=n;++i)S[i]=a[i]=read();
sort(&S[1],&S[n+1]);tot=unique(&S[1],&S[n+1])-S-1;
for(int i=1;i<=n;++i)a[i]=lower_bound(&S[1],&S[tot+1],a[i])-S;
for(int i=1;i<=n;++i)p[a[i]].push_back(i);
for(int i=1;i<=n;++i)b[i]=(i-1)/m+1;
for(int i=1;i<=blk;++i)
{
memset(num,0,sizeof(num));
int x=0;
for(int k=i;k<=blk;++k)
{
for(int j=(k-1)*m+1;j<=n&&j<=k*m;++j)
{
num[a[j]]++;
if(num[a[j]]>num[x]||(num[a[j]]==num[x]&&x>a[j]))x=a[j];
}
f[i][k]=x;
}
}
int ans=0;
while(Q--)
{
int l=(read()+ans-1)%n+1,r=(read()+ans-1)%n+1;
if(l>r)swap(l,r);
int mx=0,x=0;
if(b[l]==b[r])
for(int i=l;i<=r;++i)
{
int d=Calc(a[i],l,r);
if(d>mx||(d==mx&&x>a[i]))mx=d,x=a[i];
}
else
{
x=f[b[l]+1][b[r]-1];mx=Calc(x,l,r);
for(int i=l;i<=n&&(i==l||i%m!=1);++i)
{
int d=Calc(a[i],l,r);
if(d>mx||(d==mx&&x>a[i]))mx=d,x=a[i];
}
for(int i=r;i>=1&&(i==r||i%m!=0);--i)
{
int d=Calc(a[i],l,r);
if(d>mx||(d==mx&&x>a[i]))mx=d,x=a[i];
}
}
printf("%d\n",ans=S[x]);
}
return 0;
}
【BZOJ2724】蒲公英(分块)的更多相关文章
- [日常摸鱼]bzoj2724蒲公英-分块
区间众数经典题~ http://begin.lydsy.com/JudgeOnline/problem.php?id=4839这里可以提交~ 题意大概就是没有修改的询问区间众数,如果有一样的输出最小的 ...
- BZOJ2724 蒲公英 【分块】
BZOJ2724 蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多小朋友也被 ...
- 【BZOJ2724】[Violet 6]蒲公英 分块+二分
[BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...
- BZOJ2724 [Violet 6]蒲公英 分块
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...
- 【bzoj2724】[Violet 6]蒲公英 分块+STL-vector
题目描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 样例输入 6 3 1 2 3 2 1 2 1 5 3 ...
- BZOJ2724 [Violet]蒲公英 分块
题目描述 经典区间众数题目 然而是权限题,所以题目链接放Luogu的 题解 因为太菜所以只会$O(n*\sqrt{n}+n*\sqrt{n}*log(n))$的做法 就是那种要用二分的,并不会clj那 ...
- bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式
这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...
- BZOJ 2724: [Violet 6]蒲公英( 分块 )
虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...
- [Violet]蒲公英 分块
发现写算法专题老是写不动,,,, 所以就先把我在luogu上的题解搬过来吧! 题目大意:查询区间众数,无修改,强制在线 乍一看是一道恐怖的题,仔细一看发现并没有那么难: 大致思路是这样的,首先我们要充 ...
- [BZOJ2724] 蒲公英
题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多小朋友也被它杀掉了.我觉得把那么可怕 ...
随机推荐
- [Unity3D]MonoDeveloper快捷键(补全代码补全引用中文乱码tab转空格)
Hello亲爱的观众朋友们大家好,我是09. vs支持各种插件,一般推荐用vs.不过总有人(例如我)由于各种原因用MonoDeveloper.苦于每次上网找各种设置,此处集中写下我用MonoDevel ...
- CHAPTER 7 Science in Islam 第7章 伊斯兰中的科学
CHAPTER 7 Science in Islam 第7章 伊斯兰中的科学 Galen did not live to see the decline of the Roman Empire, bu ...
- DP使用GUI推送WIN客户端是报110:1022错误的解决办法
在使用GUI推送WIN客户端时,输入用户名和密码后报错: [Critical 110::1022] Cannot connect to the SCM (Service Control Manage ...
- redis使用哈希槽实现集群
Redis Cluster集群 一.redis-cluster设计 Redis集群搭建的方式有多种,例如使用zookeeper等,但从redis 3.0之后版本支持redis-cluster集群,Re ...
- java的内存管理机制
1.内存区域的分类 栈内存:基本类型变量和对象的引用,优势在于存取速度快 堆内存:new创建的对象和数组以及对象的实例化变量,优势在于动态分配内存,但是存取速度相对较慢 2.不同类型的内存分配 (1) ...
- java实验1实验报告(20135232王玥)
实验一 Java开发环境的熟悉 一.实验内容 1. 使用JDK编译.运行简单的Java程序 2.使用Eclipse 编辑.编译.运行.调试Java程序 二.实验要求 1.没有Linux基础的同学建议先 ...
- 20172321『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结
20172321『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结 结对伙伴 学号 :20172324 姓名 :曾程 伙伴第一周博客地址: 对结对伙伴的评价:一个很优秀的同学,在这次项目中 ...
- unix网络编程——I/O多路复用之epoll
1. 基本概念 当程序进行IO时,如果数据尚未准备好,那么IO将处于阻塞状态.当某个进程有多个打开的文件,比如socket,那么其后的所有准备好读写的文件将受到阻塞的影响而不能操作.不借助线程,单一进 ...
- 关于“scrum站立会议”
每日站立会议是SCRUM方法中的一条关键实践,整个会议可能会比较混乱粗略,但推进进度的目标却非常清晰明确,并促使团队齐心协力朝共同目标迈进. 站立会议的功能很简单,作为一个以简短为特点的项目会议,所有 ...
- paperOne基于java web的简易四则运算出题网站
项目成员:张金生 张政 需求概要 1.运算数均为正整数 2.包含的运算符有+,-,*,/ 3.除法运算结果为整除运算 4.批量生成题目并判题 核心功能分析 1.题目生成——java后端 题目生 ...