题目描述

An annual bicycle rally will soon begin in Byteburg. The bikers of Byteburg are natural long distance cyclists. Local representatives of motorcyclists, long feuding the cyclists, have decided to sabotage the event.

There are intersections in Byteburg, connected with one way streets. Strangely enough, there are no cycles in the street network - if one can ride from intersection U to intersection V , then it is definitely impossible to get from V to U.

The rally's route will lead through Byteburg's streets. The motorcyclists plan to ride their blazing machines in the early morning of the rally day to one intersection and completely block it. The cyclists' association will then of course determine an alternative route but it could happen that this new route will be relatively short, and the cyclists will thus be unable to exhibit their remarkable endurance. Clearly, this is the motorcyclists' plan - they intend to block such an intersection that the longest route that does not pass through it is as short as possible.

给定一个N个点M条边的有向无环图,每条边长度都是1。

请找到一个点,使得删掉这个点后剩余的图中的最长路径最短。

输入输出格式

输入格式:

In the first line of the standard input, there are two integers, N and M(2<=N<=500 000,1<=M<=1 000 000), separated by a single space, that specify the number of intersections and streets in Byteburg. The intersections are numbered from to . The lines that follow describe the street network: in the -th of these lines, there are two integers, Ai, Bi(1<=Ai,Bi<=N,Ai<>Bi), separated by a single space, that signify that there is a one way street from the intersection no. Ai to the one no. Bi.

第一行包含两个正整数N,M(2<=N<=500 000,1<=M<=1 000 000),表示点数、边数。

接下来M行每行包含两个正整数A[i],B[i] (1<=A[i],B[i]<=N,A[i]<>B[i]),表示A[i]到B[i]有一条边。

输出格式:

The first and only line of the standard output should contain two integers separated by a single space. The first of these should be the number of the intersection that the motorcyclists should block, and the second - the maximum number of streets that the cyclists can then ride along in their rally. If there are many solutions, your program can choose one of them arbitrarily.

包含一行两个整数x,y,用一个空格隔开,x为要删去的点,y为删除x后图中的最长路径的长度,如果有多组解请输出任意一组。

输入输出样例

输入样例#1:

6 5

1 3

1 4

3 6

3 4

4 5

输出样例#1:

1 2

题解

一道神题

这题没用主席树,但用了权值线段树

建一个源点和汇点

拓扑排序后,用dp的方法求得图上正向边的最长路\(d[0]\)数组和反向边的最长路\(d[1]\)数组,类似于SPFA的\(d\)数组,但不要用SPFA求。本来我用的SPFA,结果T掉了

那么对于每一条边,一定包含这条边的图上的最长路就是这条边的出发点的\(d[0]\)加上这条边到达点的\(d[1]\),我们把这个值当做这条边的权值

那么删去一个点的话,就把以这个点为到达点的边的权值在权值线段树里删掉,然后就维护了删去了这个点后的最长路(存的就是跨过了要删去的点的路径的长度)

更新答案后再把以这个点为出发点的边的权值加到权值线段树里

(每次删掉一个点的时候并没有把与它相连的所有边都删掉,这样省时间)

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
#define Mid ((l+r)>>1)
#define lson rt<<1,l,Mid
#define rson rt<<1|1,Mid+1,r
const int MAXM=2000000+10,MAXN=2000000+10,inf=0x3f3f3f3f;
int n,m,e[2],beg[2][MAXN],nex[2][MAXM],to[2][MAXM],w[2][MAXM],s,t,d[2][MAXN],p[MAXN],degree[MAXN],ans=inf,num,topo[MAXN],cnt;
std::queue<int> q;
struct Q_Tree{
int Max[MAXM],Num[MAXM];
inline void PushUp(int rt)
{
if(Max[rt<<1]>Max[rt<<1|1])Max[rt]=Max[rt<<1],Num[rt]=Num[rt<<1];
else Max[rt]=Max[rt<<1|1],Num[rt]=Num[rt<<1|1];
}
inline void Insert(int rt,int l,int r,int pos)
{
if(l==r)Max[rt]=pos,Num[rt]++;
else
{
if(pos<=Mid)Insert(lson,pos);
else Insert(rson,pos);
PushUp(rt);
}
}
inline void Delete(int rt,int l,int r,int pos)
{
if(l==r)
{
Num[rt]--;
if(!Num[rt])Max[rt]=0;
}
else
{
if(pos<=Mid)Delete(lson,pos);
else Delete(rson,pos);
PushUp(rt);
}
}
};
Q_Tree T;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[0][++e[0]]=y;
nex[0][e[0]]=beg[0][x];
beg[0][x]=e[0];
w[0][e[0]]=z;
to[1][++e[1]]=x;
nex[1][e[1]]=beg[1][y];
beg[1][y]=e[1];
w[1][e[1]]=z;
}
inline void toposort()
{
for(register int i=1;i<=n;++i)
if(!degree[i])q.push(i);
while(!q.empty())
{
int x=q.front();
q.pop();
topo[++cnt]=x;
for(register int i=beg[0][x];i;i=nex[0][i])
{
degree[to[0][i]]--;
if(!degree[to[0][i]])q.push(to[0][i]);
}
}
}
int main()
{
read(n);read(m);
s=n+1;t=n+2;
for(register int i=1;i<=m;++i)
{
int u,v;
read(u);read(v);
degree[v]++;
insert(u,v,1);
}
toposort();
for(register int p=n;p>=1;--p)
for(register int x=topo[p],i=beg[0][x];i;i=nex[0][i])chkmax(d[1][x],d[1][to[0][i]]+1);
for(register int p=1;p<=n;++p)
for(register int x=topo[p],i=beg[0][x];i;i=nex[0][i])chkmax(d[0][to[0][i]],d[0][x]+1);
for(register int i=1;i<=n;++i)insert(s,i,0),insert(i,t,0);
for(register int i=1;i<=n;++i)T.Insert(1,1,n+2,d[1][i]);
d[0][s]=d[1][t]=-1;
for(register int t=1;t<=n;++t)
{
int x=topo[t];
for(register int i=beg[1][x];i;i=nex[1][i])T.Delete(1,1,n+2,d[0][to[1][i]]+d[1][x]+1);
if(T.Max[1]<ans)ans=T.Max[1],num=x;
for(register int i=beg[0][x];i;i=nex[0][i])T.Insert(1,1,n+2,d[0][x]+d[1][to[0][i]]+1);
}
write(num,' '),write(ans,'\n');
return 0;
}

【刷题】洛谷 P3573 [POI2014]RAJ-Rally的更多相关文章

  1. 洛谷 P3573 [POI2014]RAJ-Rally 解题报告

    P3573 [POI2014]RAJ-Rally 题意: 给定一个\(N\)个点\(M\)条边的有向无环图,每条边长度都是\(1\). 请找到一个点,使得删掉这个点后剩余的图中的最长路径最短. 输入输 ...

  2. 【刷题】BZOJ 4543 [POI2014]Hotel加强版

    Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...

  3. 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)

    洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...

  4. 2018.10.30 一题 洛谷4660/bzoj1168 [BalticOI 2008]手套——思路!问题转化与抽象!+单调栈

    题目:https://www.luogu.org/problemnew/show/P4660 https://www.lydsy.com/JudgeOnline/problem.php?id=1168 ...

  5. 洛谷 P3576 [POI2014]MRO-Ant colony

    P3576 [POI2014]MRO-Ant colony 题目描述 The ants are scavenging an abandoned ant hill in search of food. ...

  6. 洛谷P3576 [POI2014]MRO-Ant colony [二分答案,树形DP]

    题目传送门 MRO-Ant colony 题目描述 The ants are scavenging an abandoned ant hill in search of food. The ant h ...

  7. 洛谷P3567[POI2014]KUR-Couriers(主席树+二分)

    题意:给一个数列,每次询问一个区间内有没有一个数出现次数超过一半 题解: 最近比赛太多,都没时间切水题了,刚好日推了道主席树裸题,就写了一下 然后 WA80 WA80 WA0 WA90 WA80 ?? ...

  8. AC日记——大爷的字符串题 洛谷 P3709

    大爷的字符串题 思路: 莫队,需开O2,不开50: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 20000 ...

  9. 洛谷P3572 [POI2014]PTA-Little Bird

    P3572 [POI2014]PTA-Little Bird 题目描述 In the Byteotian Line Forest there are nn trees in a row. On top ...

随机推荐

  1. java学习(五)Number类、Math类

    Number类 顾名思义嘛,搞数字的,以前也用到过,就是相当于内置了一堆数字的类嘛,用哪种类型的就引用下这个包就好了呗 Integer.Long.Byte.Double.Float.Short都是Nu ...

  2. Python输出格式全总结

    输入输出 有几种方法可以显示程序的输出:数据可以以人类可读的形式打印出来,或者写入文件以供将来使用.本章将讨论一些可能性. 更漂亮的输出格式 到目前为止,我们遇到了两种写入值的方法:表达式语句 和 p ...

  3. Log4j简单配置解析

    log4j.rootLogger=ERROR, stdoutlog4j.logger.tk.mybatis.simple.mapper=TRACElog4j.appender.stdout=org.a ...

  4. 使用AD对Linux客户端进行身份验证

    https://technet.microsoft.com/zh-cn/library/2008.12.linux.aspx

  5. tar.gz 文件解压 (安装 netbean 时会用到)

    sudo tar xvf jdk-7u45-linux-i586.tar.gz -C /usr/lib 参考文章 http://hi.baidu.com/xiaomeng008/item/5e787b ...

  6. shell之arp命令

    arp: 显示所有的表项. arp -d address: 删除一个arp表项. arp -s address hw_addr: 设置一个arp表项.   常用参数: -a 使用bsd形式输出.(没有 ...

  7. Invalid bound statement (not found): com.example.managerdemo.mapper.SingleTableMapper.selectAllValuesByConditionsNoPage

    报Invalid bound statement (not found): com.example.managerdemo.mapper.SingleTableMapper.selectAllValu ...

  8. 北航MOOC系统Android客户端NABC

    北航MOOC手机客户端NABC分析 1) N (Need 需求) MOOC是Massive Open Online Course的缩写,通常被译为大型开放式网络课程,它最早在08年的时候由一位加拿大的 ...

  9. 设计与实现分离——面向接口编程(OO博客第三弹)

    如果说继承是面向对象程序设计中承前启后的特质,那么接口就是海纳百川的体现了.它们都是对数据和行为的抽象,都是对性质和关系的概括.只不过前者是纵向角度,而后者是横向角度罢了.今天呢,我想从设计+语法角度 ...

  10. pxe前期接入H3C交换机网络准备

    环境:一个装机vlan3010,一个业务vlan,将接入交换机的下联,上联设置好vlan 如果服务器一直出于dhcp状态,有可能是交换机到服务器的光纤线路有问题,建议在交换机查看端口是否是down的. ...