在php5.3版本之前, php变量的回收机制只是简单的通过计数来处理(当refcount=0时,会回收内存),但这样会出现一个问题

$a=array("str");

$a[]=&$a;

unset($a);

执行unset之前,$a的refcount 为2,执行unset之后,$a的refcout为1,因为是1不等于0,不能被回收内存,即为垃圾,当然,在php脚本执行完毕后,所分配的内存将全部被回收,但是现在php除了应用于脚本以外,更多的地方用于写守护服务(当然我不推荐),可能长达一个月,两个月才结束脚本,这期间例如上面的程序会产生内存溢出

注:unset并不能释放内存,需要看zval的refcount是否为0

php5.3以后增了GC垃圾回收机制

在分配zval时,以zval_gc_info为单位

#define ALLOC_ZVAL(z)                                     \
do { \
(z) = (zval*)emalloc(sizeof(zval_gc_info)); \
GC_ZVAL_INIT(z); \
} while () typedef struct _zval_gc_info {
zval z;
union {
gc_root_buffer *buffered;
struct _zval_gc_info *next;
} u;
} zval_gc_info; #define FREE_ZVAL(z) \
do { \
GC_REMOVE_ZVAL_FROM_BUFFER(z); \
efree(z); \
} while ()
typedef struct _gc_root_buffer {
struct _gc_root_buffer *prev; /* double-linked list */
struct _gc_root_buffer *next;
zend_object_handle handle; /* must be 0 for zval */
union {
zval *pz;
zend_object_handlers *handlers;
} u;
} gc_root_buffer;

php的GC回收机制启动时,会分配10000个gc_root_buffer的空间

ZEND_API void gc_init(TSRMLS_D)
{
if (GC_G(buf) == NULL && GC_G(gc_enabled)) {
GC_G(buf) = (gc_root_buffer*) malloc(sizeof(gc_root_buffer) * GC_ROOT_BUFFER_MAX_ENTRIES);
GC_G(last_unused) = &GC_G(buf)[GC_ROOT_BUFFER_MAX_ENTRIES];
gc_reset(TSRMLS_C);
}
}

在unset($a)时,详见这里 在active_systom_table找到key为a的zval后,对其value执行析构函数,将其zval的refcount-1,若减1后的值为0,说明可能直接释放内存,若为大于0,放到gc_root_buffer中

ZEND_API void _zval_ptr_dtor(zval **zval_ptr ZEND_FILE_LINE_DC) /* {{{ */
{
Z_DELREF_PP(zval_ptr);
if (Z_REFCOUNT_PP(zval_ptr) == ) {
TSRMLS_FETCH(); if (*zval_ptr != &EG(uninitialized_zval)) {
GC_REMOVE_ZVAL_FROM_BUFFER(*zval_ptr);
zval_dtor(*zval_ptr);
efree_rel(*zval_ptr);
}
} else {
TSRMLS_FETCH(); if (Z_REFCOUNT_PP(zval_ptr) == ) {
Z_UNSET_ISREF_PP(zval_ptr);
} GC_ZVAL_CHECK_POSSIBLE_ROOT(*zval_ptr);
}
}
#define GC_ZVAL_CHECK_POSSIBLE_ROOT(z) /
gc_zval_check_possible_root((z) TSRMLS_CC) static zend_always_inline void gc_zval_check_possible_root(zval *z TSRMLS_DC)
{
if (z->type == IS_ARRAY || z->type == IS_OBJECT) {
gc_zval_possible_root(z TSRMLS_CC);
}
} ZEND_API void gc_zval_possible_root(zval *zv TSRMLS_DC)
{
if (UNEXPECTED(GC_G(free_list) != NULL &&
GC_ZVAL_ADDRESS(zv) != NULL &&
GC_ZVAL_GET_COLOR(zv) == GC_BLACK) &&
(GC_ZVAL_ADDRESS(zv) < GC_G(buf) ||
GC_ZVAL_ADDRESS(zv) >= GC_G(last_unused))) {
/* The given zval is a garbage that is going to be deleted by
* currently running GC */
return;
} if (zv->type == IS_OBJECT) {
GC_ZOBJ_CHECK_POSSIBLE_ROOT(zv);
return;
} GC_BENCH_INC(zval_possible_root);
//如果zv中的gc_root_buffer最后两位不是紫色,则进行处理
if (GC_ZVAL_GET_COLOR(zv) != GC_PURPLE) {
GC_ZVAL_SET_PURPLE(zv); //设置为紫色 if (!GC_ZVAL_ADDRESS(zv)) {
gc_root_buffer *newRoot = GC_G(unused); if (newRoot) {
GC_G(unused) = newRoot->prev;
} else if (GC_G(first_unused) != GC_G(last_unused)) {
newRoot = GC_G(first_unused);
GC_G(first_unused)++;
} else {
if (!GC_G(gc_enabled)) {
GC_ZVAL_SET_BLACK(zv);
return;
}
zv->refcount__gc++;
gc_collect_cycles(TSRMLS_C);
zv->refcount__gc--;
newRoot = GC_G(unused);
if (!newRoot) {
return;
}
GC_ZVAL_SET_PURPLE(zv);
GC_G(unused) = newRoot->prev;
} newRoot->next = GC_G(roots).next;
newRoot->prev = &GC_G(roots);
GC_G(roots).next->prev = newRoot;
GC_G(roots).next = newRoot; GC_ZVAL_SET_ADDRESS(zv, newRoot); //将gc_root_buffer放到zval_gc_info结构体中 newRoot->handle = ;
newRoot->u.pz = zv; GC_BENCH_INC(zval_buffered);
GC_BENCH_INC(root_buf_length);
GC_BENCH_PEAK(root_buf_peak, root_buf_length);
}
}
}

将当前zval放到gc_root_bufer中,每个zval只放一次,依据是该zval所在的zval_gc_info中的gc_root_buffer的颜色 是否是 紫色

#define GC_ZVAL_GET_COLOR(v) \
GC_GET_COLOR(((zval_gc_info*)(v))->u.buffered)

#define GC_GET_COLOR(v) \
(((zend_uintptr_t)(v)) & GC_COLOR)

若不是紫色,则设置为紫色

#define GC_ZVAL_SET_PURPLE(v) \
GC_SET_PURPLE(((zval_gc_info*)(v))->u.buffered)

#define GC_SET_PURPLE(v) \
(v) = ((gc_root_buffer*)(((zend_uintptr_t)(v)) | GC_PURPLE))

宏GC_ZVAL_SET_ADDRESS(zv, newRoot);用来将gc_root_buffer newRoot 放到zv相应位置

#define GC_COLOR  0x03

#define GC_BLACK  0x00
#define GC_WHITE 0x01
#define GC_GREY 0x02
#define GC_PURPLE 0x03 #define GC_ZVAL_SET_ADDRESS(v, a) \
GC_SET_ADDRESS(((zval_gc_info*)(v))->u.buffered, (a)) #define GC_SET_ADDRESS(v, a) \
(v) = ((gc_root_buffer*)((((zend_uintptr_t)(v)) & GC_COLOR) | ((zend_uintptr_t)(a))))
GC_ZVAL_SET_ADDRESS宏中先将v强制转为zval_gc_info类型,本身在为zval分配内存时, 就是以zval_gc_info为单位的,将强转为zval*,因为只需要对zval结构体填充数据,不需要 gc_root_buffer *bufer这个样成员
因为在结构体zval_gc_val中,zval z是第一个成员,那么z的地址也是zval_gc_info本身的内存地址 在PHP GC中,使用颜色来标明垃圾的处理过程 指针无论在32位机或64位机,最后两位均为0, gc_collect_cycles处理垃圾


ZEND_API int gc_collect_cycles(TSRMLS_D)
{
int count = ; if (GC_G(roots).next != &GC_G(roots)) {
zval_gc_info *p, *q, *orig_free_list, *orig_next_to_free; if (GC_G(gc_active)) {
return ;
}
GC_G(gc_runs)++;
GC_G(zval_to_free) = FREE_LIST_END;
GC_G(gc_active) = ;
gc_mark_roots(TSRMLS_C);
gc_scan_roots(TSRMLS_C);
gc_collect_roots(TSRMLS_C); orig_free_list = GC_G(free_list);
orig_next_to_free = GC_G(next_to_free);
p = GC_G(free_list) = GC_G(zval_to_free);
GC_G(zval_to_free) = NULL;
GC_G(gc_active) = ; /* First call destructors */
while (p != FREE_LIST_END) {
if (Z_TYPE(p->z) == IS_OBJECT) {
if (EG(objects_store).object_buckets &&
EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].valid &&
EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].bucket.obj.refcount <= &&
EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].bucket.obj.dtor &&
!EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].destructor_called) {   EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].destructor_called = ;
  EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].bucket.obj.refcount++;
  EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].bucket.obj.dtor(EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].bucket.obj.object, Z_OBJ_HANDLE(p->z) TSRMLS_CC);
  EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].bucket.obj.refcount--;
  }
}
count++;
p = p->u.next;
} /* Destroy zvals */
p = GC_G(free_list);
while (p != FREE_LIST_END) {
GC_G(next_to_free) = p->u.next;
if (Z_TYPE(p->z) == IS_OBJECT) {
if (EG(objects_store).object_buckets &&
EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].valid &&
EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].bucket.obj.refcount <= ) {
EG(objects_store).object_buckets[Z_OBJ_HANDLE(p->z)].bucket.obj.refcount = ;
Z_TYPE(p->z) = IS_NULL;
zend_objects_store_del_ref_by_handle_ex(Z_OBJ_HANDLE(p->z), Z_OBJ_HT(p->z) TSRMLS_CC);
}
} else if (Z_TYPE(p->z) == IS_ARRAY) {
Z_TYPE(p->z) = IS_NULL;
zend_hash_destroy(Z_ARRVAL(p->z));
FREE_HASHTABLE(Z_ARRVAL(p->z));
} else {
zval_dtor(&p->z);
Z_TYPE(p->z) = IS_NULL;
}
p = GC_G(next_to_free);
} /* Free zvals */
p = GC_G(free_list);
while (p != FREE_LIST_END) {
q = p->u.next;
FREE_ZVAL_EX(&p->z);
p = q;
}
GC_G(collected) += count;
GC_G(free_list) = orig_free_list;
GC_G(next_to_free) = orig_next_to_free;
} return count;
}
 
gc_mark_roots(TSRMLS_C); 为垃圾打下颜色标记,遍历gc_root_buffer,其中的u.pz将紫色变更为灰色,遍历u.pz该array zval的每个元素,将其refcount-1,
gc_collect_roots遍历gc_root_buffer,如果refcount==0再设置为白色,表示为垃圾,若refcount >0,表示别人在使用,设置为黑色

static void gc_mark_roots(TSRMLS_D)
{
gc_root_buffer *current = GC_G(roots).next; while (current != &GC_G(roots)) {
if (current->handle) {
if (EG(objects_store).object_buckets) {
//处理对象,暂时不用看
}
} else {
if (GC_ZVAL_GET_COLOR(current->u.pz) == GC_PURPLE) {
zval_mark_grey(current->u.pz TSRMLS_CC);
} else {
GC_ZVAL_SET_ADDRESS(current->u.pz, NULL);
GC_REMOVE_FROM_BUFFER(current);
}
}
current = current->next;
}
}

 
static void zval_mark_grey(zval *pz TSRMLS_DC)
{
Bucket *p; tail_call:
if (GC_ZVAL_GET_COLOR(pz) != GC_GREY) {
p = NULL;
GC_BENCH_INC(zval_marked_grey);
GC_ZVAL_SET_COLOR(pz, GC_GREY); if (Z_TYPE_P(pz) == IS_OBJECT && EG(objects_store).object_buckets) {
//对象的处理, 暂时不用管
} else if (Z_TYPE_P(pz) == IS_ARRAY) {
if (Z_ARRVAL_P(pz) == &EG(symbol_table)) {
GC_ZVAL_SET_BLACK(pz);
} else {
p = Z_ARRVAL_P(pz)->pListHead;
}
}
while (p != NULL) {
pz = *(zval**)p->pData;
if (Z_TYPE_P(pz) != IS_ARRAY || Z_ARRVAL_P(pz) != &EG(symbol_table)) {
pz->refcount__gc--;
}
if (p->pListNext == NULL) {
goto tail_call;
} else {
zval_mark_grey(pz TSRMLS_CC);
}
p = p->pListNext;
}
}
}

第二次遍历gc_root_buffer,如果zv中的颜色为灰色,且refcount=0,再置为白色,若refcount>0,置为黑色(不是垃圾)

static void gc_scan_roots(TSRMLS_D)
{
gc_root_buffer *current = GC_G(roots).next; while (current != &GC_G(roots)) {
if (current->handle) {
zval z; INIT_PZVAL(&z);
Z_OBJ_HANDLE(z) = current->handle;
Z_OBJ_HT(z) = current->u.handlers;
zobj_scan(&z TSRMLS_CC);
} else {
zval_scan(current->u.pz TSRMLS_CC);
}
current = current->next;
}
}
static int zval_scan(zval *pz TSRMLS_DC)
{
Bucket *p; tail_call:
if (GC_ZVAL_GET_COLOR(pz) == GC_GREY) {
p = NULL;
if (pz->refcount__gc > ) {
zval_scan_black(pz TSRMLS_CC);
} else {
GC_ZVAL_SET_COLOR(pz, GC_WHITE);
if (Z_TYPE_P(pz) == IS_OBJECT && EG(objects_store).object_buckets) {
//处理object
} else if (Z_TYPE_P(pz) == IS_ARRAY) {
if (Z_ARRVAL_P(pz) == &EG(symbol_table)) {
GC_ZVAL_SET_BLACK(pz);
} else {
p = Z_ARRVAL_P(pz)->pListHead;
}
}
}
while (p != NULL) {
if (p->pListNext == NULL) {
pz = *(zval**)p->pData;
goto tail_call;
} else {
zval_scan(*(zval**)p->pData TSRMLS_CC);
}
p = p->pListNext;
}
}
return ;
}

遍历gc_root_buffer链表,将zv颜色为白色的数据放置单独一个链表,全部回收

static void gc_collect_roots(TSRMLS_D)
{
gc_root_buffer *current = GC_G(roots).next; while (current != &GC_G(roots)) {
if (current->handle) {
if (EG(objects_store).object_buckets) {
struct _store_object *obj = &EG(objects_store).object_buckets[current->handle].bucket.obj;
zval z; GC_SET_ADDRESS(obj->buffered, NULL);
INIT_PZVAL(&z);
Z_OBJ_HANDLE(z) = current->handle;
Z_OBJ_HT(z) = current->u.handlers;
zobj_collect_white(&z TSRMLS_CC);
}
} else {
GC_ZVAL_SET_ADDRESS(current->u.pz, NULL);
zval_collect_white(current->u.pz TSRMLS_CC);
} GC_REMOVE_FROM_BUFFER(current);
current = current->next;
}
}
static void zval_collect_white(zval *pz TSRMLS_DC)
{
Bucket *p; tail_call:
if (((zval_gc_info*)(pz))->u.buffered == (gc_root_buffer*)GC_WHITE) {
p = NULL;
GC_ZVAL_SET_BLACK(pz); if (Z_TYPE_P(pz) == IS_OBJECT && EG(objects_store).object_buckets) {
...
} else {
if (Z_TYPE_P(pz) == IS_ARRAY) {
p = Z_ARRVAL_P(pz)->pListHead;
}
} /* restore refcount and put into list to free */
pz->refcount__gc++;
((zval_gc_info*)pz)->u.next = GC_G(zval_to_free);
GC_G(zval_to_free) = (zval_gc_info*)pz; while (p != NULL) {
pz = *(zval**)p->pData;
if (Z_TYPE_P(pz) != IS_ARRAY || Z_ARRVAL_P(pz) != &EG(symbol_table)) {
pz->refcount__gc++;
}
if (p->pListNext == NULL) {
goto tail_call;
} else {
zval_collect_white(pz TSRMLS_CC);
}
p = p->pListNext;
}
}
}

php的GC机制的更多相关文章

  1. Java 内存区域和GC机制分析

    目录 Java垃圾回收概况 Java内存区域 Java对象的访问方式 Java内存分配机制 Java GC机制 垃圾收集器 Java垃圾回收概况 Java GC(Garbage Collection, ...

  2. 从C#垃圾回收(GC)机制中挖掘性能优化方案

    GC,Garbage Collect,中文意思就是垃圾回收,指的是系统中的内存的分配和回收管理.其对系统性能的影响是不可小觑的.今天就来说一下关于GC优化的东西,这里并不着重说概念和理论,主要说一些实 ...

  3. 浅谈你感兴趣的 C# GC 机制底层

    本文内容是学习CLR.via C#的21章后个人整理,有不足之处欢迎指导. 昨天是1024,coder的节日,我为自己coder之路定下一句准则--保持学习,保持自信,保持谦逊,保持分享,越走越远. ...

  4. GC基本算法及C++GC机制

    前言 垃圾收集器是一种动态存储分配器,它自动释放程序不再需要的已分配的块,这些块也称为垃圾.在程序员看来,垃圾就是不再被引用的对象.自动回收垃圾的过程则称为垃圾收集(garbage collectio ...

  5. Java 内存区域和GC机制

    目录 Java垃圾回收概况 Java内存区域 Java对象的访问方式 Java内存分配机制 Java GC机制 垃圾收集器 Java垃圾回收概况 Java GC(Garbage Collection, ...

  6. Java系列笔记(3) - Java 内存区域和GC机制

    目录 Java垃圾回收概况 Java内存区域 Java对象的访问方式 Java内存分配机制 Java GC机制 垃圾收集器 Java垃圾回收概况 Java GC(Garbage Collection, ...

  7. 引用计数gc机制使用不当导致内存泄漏

    上一篇文章找同事review了一下,收到的反馈是铺垫太长了,我尽量直入正题,哈哈 最近dbd压测时发现内存泄漏,其实这个问题去年已经暴露了,参见这篇博客[压测周].当时排查不够仔细,在此检讨下.关于d ...

  8. .NET GC机制学习笔记

    学习笔记内容来自网络资料摘录http://www.cnblogs.com/springyangwc/archive/2011/06/13/2080149.html 1.GC介绍 Garbage Col ...

  9. 【转】Java之 内存区域和GC机制

    转自:Leo Chin 目录 Java垃圾回收概况 Java内存区域 Java对象的访问方式 Java内存分配机制 Java GC机制 垃圾收集器 Java垃圾回收概况 Java GC(Garbage ...

  10. Java 内存区域和GC机制--备用

    Java垃圾回收概况 Java GC(Garbage Collection,垃圾收集,垃圾回收)机制,是Java与C++/C的主要区别之一,作为Java开发者,一般不需要专门编写内存回收和垃圾清理代 ...

随机推荐

  1. C变参数函数demo

    #include <stdio.h> #include <stdarg.h> int sum(int a,...) {     int temp = 0,sum=0,count ...

  2. 解决Android启动显示空白界面的问题

    Android程序启动时,第一个看的界面并不是我们的指定的第一个Activity界面,而是显示了一个空白的界面,带标题栏的,但是界面什么内容都没有,这个界面只显示不到1秒左右的时间就会切换到我们的第一 ...

  3. 上海第八中学 shader

    http://shiba.hpe.cn/jiaoyanzu/wuli/soft/xna.aspx?classId=4

  4. Tomcat中的Web.xml和servlet.xml的学习

    Web.xml文件使用总结 作用: 存储项目相关的配置信息,保护servlet.解耦一些数据对程序的依赖 使用位置: 每个web项目中 Tomcat服务器中(在服务器目录conf目录中) 区别: We ...

  5. 2018.10.14 NOIP训练 直线(二分答案+st表+切比雪夫距离转化)

    传送门 二分答案好题. 这已经是当年普及组模拟时挖的坑了233. 这道题还是很不错的. 考虑把坐标系转个45度再操作. 为了不爆精度可以直接转切比雪夫距离. 然后就直接二分答案. 其中竖线就按二分的答 ...

  6. 2018.09.16 bzoj3626: [LNOI2014]LCA(树链剖分)

    传送门 树链剖分好题. 对于每个点维护一个值vi" role="presentation" style="position: relative;"&g ...

  7. SQL查询优化的一些建议

    使用批量查询,而不是N次循环查询! 重复的数据,不要重复获取: 根据需要,按需要获取表字段,而不是SELECT *: 针对频繁的搜索字段,建立必要的索引,以加快查询速度: 使用关联查询,而不是粗暴地类 ...

  8. Nginx的两种负载均衡搭建(Tomcat版)

    前言 Nginx的负载均衡一般采用upstream来实现,但是,还有另一种文件拓展的方式,同样可以实现负载均衡. 一.一般的负载均衡 upstream my_server { server local ...

  9. UVaLive 6525 Attacking rooks (二分图最大匹配)

    题意:给定一个 n * n的图,X是卒, . 是空位置,让你放尽量多的车,使得他们不互相攻击. 析:把每行连续的 . 看成X集体的一个点,同理也是这样,然后求一个最大匹配即可. 代码如下: #prag ...

  10. OpenNI体感应用开发实战 (Kinect相机)

    一直以为Kinect是双目摄像机,或者是三目,看到那三个摄像头怎么可能不产生这样的疑惑,实际上它确实是单目摄像机,它三个摄像头分别为:红外发射器,RGB彩色相机,红外接收器.而其中,红外发射器和红外接 ...