题目链接:http://poj.org/problem?id=1523

题意:给出无向图的若干条边,求割点以及各个删掉其中一个割点后将图分为几块。

题目分析:割点用tarjan算法求出来,对于每个割点,dfs一次图,求出有几块不连通的子图。

AC代码:

 #include<cstdio>
#include<cstring>
const int N=+;
struct EDGE{
int v,next;
}edge[N*N/];
int first[N],low[N],dfn[N],cut[N],vis[N];
int g,ans,rt,son,cnt,sum;
int min(int a,int b)
{
return a<b?a:b;
}
int max(int a,int b)
{
return a>b?a:b;
}
void AddEdge(int u,int v)
{
edge[g].v=v;
edge[g].next=first[u];
first[u]=g++;
}
void Tarjan(int u)
{
int i,v;
low[u]=dfn[u]=++cnt;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
if(u==rt)
son++;
else
{
if(low[v]>=dfn[u])
cut[u]=true;
}
}
else
low[u]=min(low[u],dfn[v]);
}
}
void dfs(int u)
{
vis[u]=;
for(int i=first[u];i!=-;i=edge[i].next)
{
int v=edge[i].v;
if(!vis[v])
dfs(v);
}
}
int main()
{
int t=,u,v,n,i,p;
while(scanf("%d",&u)&&u)
{
t++;
n=-;
memset(first,-,sizeof(first));
memset(cut,false,sizeof(cut));
memset(dfn,,sizeof(dfn));
g=cnt=sum=;
n=max(n,u);
scanf("%d",&v);
n=max(n,v);
AddEdge(u,v);
AddEdge(v,u);
while(scanf("%d",&u)&&u)
{
scanf("%d",&v);
n=max(n,u);
n=max(n,v);
AddEdge(u,v);
AddEdge(v,u);
}
for(i=;i<=n;i++)
{
if(!dfn[i])
{
rt=i;
son=;
Tarjan(i);
if(son>)
cut[rt]=true;
}
}
printf("Network #%d\n",t);
for(i=;i<=n;i++)
{
if(cut[i])
{
sum++;
ans=;
memset(vis,,sizeof(vis));
vis[i]=;
for(p=first[i];p!=-;p=edge[p].next)
{
v=edge[p].v;
if(!vis[v])
{
dfs(v);
ans++;
}
}
printf(" SPF node %d leaves %d subnets\n",i,ans);
}
}
if(sum==)
printf(" No SPF nodes\n");
printf("\n");
}
return ;
}

poj 1523 SPF(双连通分量割点模板)的更多相关文章

  1. POJ 1523 SPF tarjan求割点

                                                                   SPF Time Limit: 1000MS   Memory Limit ...

  2. POJ 1523 SPF(求割点)

    题目链接 题意 : 找出图中所有的割点,然后输出删掉他们之后还剩多少个连通分量. 思路 : v与u邻接,要么v是u的孩子,要么u是v的祖先,(u,v)构成一条回边. //poj1523 #includ ...

  3. POJ 1523 SPF (去掉割点能形成联通块的个数)

    思路:使用tarjan算法求出割点,在枚举去掉每一个割点所能形成的联通块的个数. 注意:后来我看了下别的代码,发现我的枚举割点的方式是比较蠢的方式,我们完全可以在tarjan过程中把答案求出来,引入一 ...

  4. poj 1523 SPF 无向图求割点

    SPF Description Consider the two networks shown below. Assuming that data moves around these network ...

  5. Tarjan算法求解无向连通图的割点、割边、点双连通分量和边双连通分量的模板

    历时好几天,终于完工了! 支持无向图四种功能:1.割点的求解 2.割边的求解 3.点双连通分量的求解 4.边双连通分量的求解 全部支持重边!!!!全部支持重边!!!!全部支持重边!!!! 测试数据: ...

  6. POJ 1523 SPF (无向图割点)

    <题目链接> 题目大意: 给你一个连通的无向图,问你其中割点的编号,并且输出删除该割点后,原图会被分成几个连通分量. 解题分析: Tarjan求割点模板题. #include <cs ...

  7. POJ 3352 (边双连通分量)

    题目链接: http://poj.org/problem?id=3352 题目大意:一个连通图中,至少添加多少条边,使得删除任意一条边之后,图还是连通的. 解题思路: 首先来看下边双连通分量的定义: ...

  8. POJ 1523 SPF (割点,连通分量)

    题意:给出一个网络(不一定连通),求所有的割点,以及割点可以切分出多少个连通分量. 思路:很多种情况. (1)如果给的图已经不是连通图,直接“  No SPF nodes”. (2)求所有割点应该不难 ...

  9. zoj 1119 / poj 1523 SPF (典型例题 求割点 Tarjan 算法)

    poj : http://poj.org/problem?id=1523 如果无向图中一个点 u 为割点 则u 或者是具有两个及以上子女的深度优先生成树的根,或者虽然不是一个根,但是它有一个子女 w, ...

随机推荐

  1. 有哪些 Bootstrap 的学习案例?

    bootstrap经典实用案例 bootstrap经典实用案例(非常详细),从菜鸟到高手的过程是艰辛的,你渴望救助.这本教程就是你无言的助手,默默的帮你到永远. 带奋斗一起飞翔,因为有了它,让我拥有理 ...

  2. 2_C语言中的数据类型 (九)逻辑运算符与if语句、switch、条件运算符?、goto语句与标号

    1          条件分支语句 1.1       关系运算符 在C语言中0代表false,非0代表真 1.1.1          < 小于 1.1.2          <= 小于 ...

  3. 关于Mybatis的Example(and ,or )应用

    近期的一个项目中遇到Mybatis的Example的and or 的应用,感觉有必要记录一下(个人见解,有问题请指出.谢谢) 1.在Example中的每一个Criteria相当于一个括号,把里面的内容 ...

  4. 日志模块logging介绍

    一.日志的级别 日志一般分为5个级别,分别如下: CRITICAL = 50 #FATAL = CRITICAL ERROR = 40 WARNING = 30 #WARN = WARNING INF ...

  5. SQL Server 任务调度

    SQL Server 内部集成了一个专用的操作系统,叫做SQLOS,处于SQL Server和Windows的中间层.SQLOS是一个协同式的多任务调度系统,使用非抢占式争用资源,用于管理线程调度.I ...

  6. html5新特性data_*自定义属性使用

    HTML5规范里增加了一个自定义data属性. 这个自定义data属性的用法非常的简单, 就是你可以往HTML标签上添加任意以 "data-"开头的属性, 这些属性页面上是不显示的 ...

  7. Java 中的接口

    接口概念 接口可以理解为一种特殊的类,由全局常量和公共抽象方法组成.类是一种具体实现体,而接口定义了某一些类所要遵守的规范,接口不必关心这些类的内部数据,也不关心这些类里方法的实现细节,它只规定这些类 ...

  8. dubbo 多人开发时(即开发环境),版本号不要一致

    导致问题:如果版本号相同,会调到别人的服务 不需要修改配置文件.直接改idea配置即可. Configurations ====> 添加parameters ===> dubbo.cons ...

  9. Jenkins自动化测试

    Jenkins自动化测试 一个持续集成的基本原则是构建应该是可验证的.你必须能够客观地确定一个特定的构建是否准备就绪构建过程的下一个阶段,最便捷的方式做到这一点是使用自动化测试.如果没有适当的自动化测 ...

  10. trampoline蹦床函数解决递归调用栈问题

    递归函数的调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出.怎么做可以减少调用栈呢?就是采用"循环"换掉"递归". 下面是一个正常的递归函数. functi ...