容易发现的一点是如果确定了每一层有哪些点,树的形态就确定了。问题变为划分bfs序。

  考虑怎样划分是合法的。同一层的点在bfs序中出现顺序与dfs序中相同。对于dfs序中相邻两点依次设为x和y,y至多在x的下一层。特殊的,根单独作为一层。

  这些条件显然是必要的,考虑一种构造方案:对于某个点,如果其在dfs序中前一个点的下一层则直接连边,否则从其bfs序中前一个点(显然是与其在同一层的)的父亲连边。这看起来是没有问题的,所以这些条件也是充分的。

  接下来考虑怎么算答案。如果bfs序中相邻两点被划分在了不同层树高就会++,于是考虑相邻点是否能划在同一层。

  首先如果bfs序中相邻两点在bfs序和dfs序中的相对顺序不同,其必须划分,这保证了第一个条件满足。

  然后对dfs序中相邻两点x和y,其在bfs序中x到y(有序,若x在y后面则该限制无效)这段区间至多被划分一次,这显然保证了第二个条件满足。

  这样可以固定一些位置是否划分,保证了方案合法,划分一次提供1贡献。而对于剩下的位置不管是否划分都是合法的,所以提供0.5的贡献。

  至于具体怎么搞,第一个条件扫一遍即可确定。第二个条件若区间内已被划分打个标记即可。否则虽然看起来有点麻烦,但实际上如果出现这种情况该区间长度只会为1。因为这说明他们之间的dfs序和bfs序相对顺序都是相同的,这仅当两点在同一层才会出现,而这样他们在bfs序中也是相邻的。

  往往很多必要条件组合在一起就是充分的了,大力猜结论不要怂。

  bzoj上莫名其妙要输出三个数。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 200010
int n,a[N],b[N],id_dfs[N],id_bfs[N],f[N],s[N],cnt[N],ans=;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3244.in","r",stdin);
freopen("bzoj3244.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) id_dfs[a[i]=read()]=i;
for (int i=;i<=n;i++) id_bfs[b[i]=read()]=i;
memset(f,,sizeof(f));f[]=;
for (int i=;i<n;i++)
if (id_dfs[b[i]]>id_dfs[b[i+]]) f[i]=;
for (int i=;i<n;i++) s[i]=s[i-]+(f[i]>);
for (int i=;i<n;i++)
if (id_bfs[a[i]]<id_bfs[a[i+]]&&s[id_bfs[a[i+]]-]>s[id_bfs[a[i]]-])
cnt[id_bfs[a[i]]]++,cnt[id_bfs[a[i+]]]--;
int x=;
for (int i=;i<n;i++)
{
x+=cnt[i];
if (x) f[i]=max(f[i],);
}
for (int i=;i<n;i++)
if (f[i]>=) ans+=f[i]<<;
else ans++;
//printf("%.3f",ans/2.0);
printf("%.3f\n%.3f\n%.3f",ans/2.0-0.001,ans/2.0,ans/2.0+0.001);
return ;
}

BZOJ3244 NOI2013树的计数(概率期望)的更多相关文章

  1. BZOJ3244 [Noi2013]树的计数 【数学期望 + 树遍历】

    题目链接 BZOJ3244 题解 不会做orz 我们要挖掘出\(bfs\)序和\(dfs\)序的性质 ①容易知道\(bfs\)序一定是一层一层的,如果我们能确定在\(bfs\)序中各层的断点,就能确定 ...

  2. [BZOJ3244][NOI2013]树的计数

    这题大家为什么都写O(NlogN)的算法呢?…… 让本蒟蒻来写一个O(N)的吧…… 首先还是对BFS序和DFS序重编号,记标好的DFS序为d[1..n].令pos[x]为x在d[]中出现的位置,即po ...

  3. [bzoj3244][noi2013]树的计数 题解

    UPD: 那位神牛的题解更新了,在这里. ------------------------------------------------------------------------------- ...

  4. [UOJ#122][NOI2013]树的计数

    [UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...

  5. [bzoj3244] [洛谷P1232] [Noi2013] 树的计数

    Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...

  6. 【BZOJ3244】【UOJ#122】【NOI2013]树的计数

    NOI都是酱的题怎么玩啊,哇.jpg 原题: 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的 ...

  7. BZOJ3244/UOJ122 [Noi2013]树的计数

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  8. jzoj5987. 【WC2019模拟2019.1.4】仙人掌毒题 (树链剖分+概率期望+容斥)

    题面 题解 又一道全场切的题目我连题目都没看懂--细节真多-- 先考虑怎么维护仙人掌.在线可以用LCT,或者像我代码里先离线,并按时间求出一棵最小生成树(或者一个森林),然后树链剖分.如果一条边不是生 ...

  9. 3244: [Noi2013]树的计数 - BZOJ

    Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...

随机推荐

  1. kali 2018.1安装教程

    00x01 摘要 Kali-linux系统,渗透测试人员的利器,其官网自称 OurMost Advanced Penetration Testing Distribution, Ever.  永远是最 ...

  2. Unity依赖注入(笔记)

    一.介绍 控制反转(Inversion of Control,简称IoC):整洁架构思想,不允许内部获知外部的存在,这就导致了我们必须在内层定义与外层交互的接口,通过依赖注入的方式将外层实现注入到内部 ...

  3. Docker Manager for Kubernetes

    一.Kubernetes介绍 Kubernets是Google开源的容器集群系统,是基于Docker构建一个容器的调度服务,提供资源调度,均衡容灾,服务注册,动态伸缩等功能套件: Kubernets提 ...

  4. 用UGUI制作可根据手指位置自动定位的隐形遥杆

    之前写过遥杆怎么做,这里依然用的是之前的方法,就不介绍了. 之前玩过<蜡烛人>,发现手游版的<蜡烛人>的遥杆是看不见的,手指直接在屏幕左边滑动人物就可以移动,可能是为了增强沉浸 ...

  5. Python3的深拷贝和浅拷贝

    a = 1 b = a a = 2 print(a, b) print(id(a), id(b)) """ 运行结果 2 1 1445293568 1445293536 ...

  6. 解决网速慢时maven仓库访问慢

    构建maven项目时会下载很多依赖,会从官网地址下载是个外国网站,访问速度会很慢,但可以通过修改maven的settings.xml文件换成国内的镜像地址就可以加快访问速度: 一.找到settings ...

  7. 正确配置 debian squeeze apt 源

    本想在 Debian Squeeze 上安装一些依赖,没想到刚执行 apt-get update ,就出现这样的错误信息. W: GPG error: http://mirrors.163.com s ...

  8. 关于几个与IO相关的重要概念

    1.读/写IO 读IO就是发指令从磁盘读取某段序号连续的扇区内容.指令一般是通知磁盘开始扇区位置,然后给出需要从这个初始扇区往后读取的连续扇区个数,同时给出动作是读还是写.磁盘收到这条指令就会按照指令 ...

  9. Python函数初识

    一.函数是什么 ​ 计算机语言中的函数是类比于数学中的函数演变来的,但是又有所不同.前面的知识中我们学会了运用基础语法(列表.字典)和流程控制语句貌似也能处理一些复杂的问题,但是相对于相似的大量重复性 ...

  10. time命令详情

    基础命令学习目录首页 原文链接:https://blog.csdn.net/adaptiver/article/details/6596143?utm_source=blogxgwz3 linux下t ...