D. Bear and Chase

题目连接:

http://codeforces.com/contest/679/problem/D

Description

Bearland has n cities, numbered 1 through n. There are m bidirectional roads. The i-th road connects two distinct cities ai and bi. No two roads connect the same pair of cities. It's possible to get from any city to any other city (using one or more roads).

The distance between cities a and b is defined as the minimum number of roads used to travel between a and b.

Limak is a grizzly bear. He is a criminal and your task is to catch him, or at least to try to catch him. You have only two days (today and tomorrow) and after that Limak is going to hide forever.

Your main weapon is BCD (Bear Criminal Detector). Where you are in some city, you can use BCD and it tells you the distance between you and a city where Limak currently is. Unfortunately, BCD can be used only once a day.

You don't know much about Limak's current location. You assume that he is in one of n cities, chosen uniformly at random (each city with probability ). You decided for the following plan:

Choose one city and use BCD there.

After using BCD you can try to catch Limak (but maybe it isn't a good idea). In this case you choose one city and check it. You win if Limak is there. Otherwise, Limak becomes more careful and you will never catch him (you loose).

Wait 24 hours to use BCD again. You know that Limak will change his location during that time. In detail, he will choose uniformly at random one of roads from his initial city, and he will use the chosen road, going to some other city.

Tomorrow, you will again choose one city and use BCD there.

Finally, you will try to catch Limak. You will choose one city and check it. You will win if Limak is there, and loose otherwise.

Each time when you choose one of cities, you can choose any of n cities. Let's say it isn't a problem for you to quickly get somewhere.

What is the probability of finding Limak, if you behave optimally?

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 400, ) — the number of cities and the number of roads, respectively.

Then, m lines follow. The i-th of them contains two integers ai and bi (1 ≤ ai, bi ≤ n, ai ≠ bi) — cities connected by the i-th road.

No two roads connect the same pair of cities. It's possible to get from any city to any other city.

Output

Print one real number — the probability of finding Limak, if you behave optimally. Your answer will be considered correct if its absolute error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct if |a - b| ≤ 10 - 6.

Sample Input

3 3

1 2

1 3

2 3

Sample Output

0.833333333333

Hint

题意

有一个人,在一个图里面开始找罪犯了。

这个人有两天的抓捕机会,他会在每一天都有机会使用BCD机器,这个BCD机器会返回这个罪犯离他的距离是多少。

当然这个人要么在第一天去抓罪犯,要么在第二天去抓罪犯。

这个罪犯也不是一个傻逼,如果那个人第一天不抓他的话,那么第二天的时候,这个罪犯就会转移阵地。

然后现在问你,在最佳情况下,这个人抓住这个罪犯的概率是多少?

题解:

考虑最暴力的情况,枚举罪犯第一天哪儿,第二天在哪儿,枚举警察第一天在哪儿使用BCD,第二天在哪儿使用BCD

这个复杂度是n^4的,显然过不了,但是显然是对的。

我们优化一下。

暴力枚举这个警察第一天在哪儿使用BCD的地点A,暴力枚举BCD返回的距离a,再暴力枚举第二天使用BCD的地点B。

显然罪犯只有可能出现在三种位置,就是距离A地点距离为a,a-1,a+1的三个地方。

这样优化了一下之后,复杂度就变成n^3了,就可以直接莽过去了。

代码

#include<bits/stdc++.h>
using namespace std;
const double eps = 1e-6;
const int maxn = 405;
int d[maxn][maxn],n,m;
double dis[maxn];
double posi[maxn];
vector<int> E[maxn];
vector<int> f;
void TAT()
{
memset(d,127,sizeof(127));
}
double next(int p,int di)
{
double ans = 0;
memset(posi,0,sizeof(posi)); for(int i=1;i<=n;i++)
if(d[p][i]==di)
for(auto v:E[i])
posi[v]+=1./n/E[i].size(); f.clear(); for(int i=1;i<=n;i++)
if(posi[i]>eps)
f.push_back(i); for(int i=1;i<=n;i++)
{
double tmp = 0;
for(auto v:f)
dis[d[i][v]]=max(dis[d[i][v]],posi[v]);
for(auto v:f)
{
tmp+=dis[d[i][v]];
dis[d[i][v]]=0;
}
ans=max(ans,tmp);
}
return ans;
}
void QAQ()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j)d[i][j]=n+1;
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
d[a][b]=1;
d[b][a]=1;
E[a].push_back(b);
E[b].push_back(a);
} for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]); double ans = 0; for(int i=1;i<=n;i++)
{
double tmp = 0;
for(int di=0;di<n;di++)
{
int cnt = 0;
for(int j=1;j<=n;j++)if(d[i][j]==di)cnt++;
if(cnt==0)continue;
double day1 = 1./n;
double day2 = next(i,di);
tmp+=max(day1,day2);
}
ans=max(ans,tmp);
}
printf("%.12f\n",ans);
}
int main()
{
TAT();
QAQ();
return 0;
}

Codeforces Round #356 (Div. 1) D. Bear and Chase 暴力的更多相关文章

  1. Codeforces Round #356 (Div. 2) C. Bear and Prime 100(转)

    C. Bear and Prime 100 time limit per test 1 second memory limit per test 256 megabytes input standar ...

  2. Codeforces Round #356 (Div. 2)B. Bear and Finding Criminals(水题)

    B. Bear and Finding Criminals time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  3. Codeforces Round #356 (Div. 2)A. Bear and Five Cards(简单模拟)

    A. Bear and Five Cards time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  4. Codeforces Round #356 (Div. 2) E. Bear and Square Grid 滑块

    E. Bear and Square Grid 题目连接: http://www.codeforces.com/contest/680/problem/E Description You have a ...

  5. Codeforces Round #356 (Div. 2) D. Bear and Tower of Cubes dfs

    D. Bear and Tower of Cubes 题目连接: http://www.codeforces.com/contest/680/problem/D Description Limak i ...

  6. Codeforces Round #356 (Div. 2) C. Bear and Prime 100 水题

    C. Bear and Prime 100 题目连接: http://www.codeforces.com/contest/680/problem/C Description This is an i ...

  7. Codeforces Round #356 (Div. 2) B. Bear and Finding Criminal 水题

    B. Bear and Finding Criminals 题目连接: http://www.codeforces.com/contest/680/problem/B Description Ther ...

  8. Codeforces Round #356 (Div. 2) A. Bear and Five Cards 水题

    A. Bear and Five Cards 题目连接: http://www.codeforces.com/contest/680/problem/A Description A little be ...

  9. Codeforces Round #356 (Div. 1) C. Bear and Square Grid

    C. Bear and Square Grid time limit per test 3 seconds memory limit per test 256 megabytes input stan ...

随机推荐

  1. 【算法】Base64编码

    1.说明 Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,Base64就是一种基于64个可打印字符来表示二进制数据的方法. 2.编码 ASCII码 -> 十六进制码 -> ...

  2. Shell-判断条件总结

    -b file 若文件存在且是一个块特殊文件,则为真 -c file 若文件存在且是一个字符特殊文件,则为真 -d file 若文件存在且是一个目录,则为真 -e file 若文件存在,则为真 -f ...

  3. nginx 实现mysql的负载均衡【转】

    默认Nginx只支持http的反向代理,要想nginx支持tcp的反向代理,还需要在编译时增加tcp代理模块支持,即nginx_tcp_proxy_module 下面操作步骤只让nginx支持tcp_ ...

  4. 如何使用vs2012单步调试uGUI(unity3d 5.3f4)

    下载uGUI源代码 uGUI源代码地址:https://bitbucket.org/Unity-Technologies/ui 下载代码工具:tortoisehg-3.6.2-x64.msi http ...

  5. 数据结构之 栈 (Python 版)

    数据结构之 栈 (Python 版) -- 利用线性表实现栈 栈的特性: 后进先出 基于顺序表实现栈 class SStack(): ''' 基于顺序表 实现的 栈类 ''' def __init__ ...

  6. Python 常用的内建函数

    内建函数 ​ Build-in Function,启动python解释器,输入dir(__builtins__), 可以看到很多python解释器启动后默认加载的属性和函数,这些函数称之为内建函数, ...

  7. 洛谷P2746校园网

    传送门啦 下面来看任务B.我们发现,图中只要存在入度为0的点和出度为0的点就永远不可能满足要求:" 不论我们给哪个学校发送新软件,它都会到达其余所有的学校 ".我们还发现,只要在入 ...

  8. 在Linux下将TPC-H数据导入到MySQL

    一.下载TPC-H 下载地址:http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp .从这个页面中找 ...

  9. PHP老师没教过你的那些知识点

    另类的写法有惊喜 我们在阅读某些源代码的时候会发现有一种另类的写法,比如 //异常写法 if(false == $result)   //正常写法 if($result == false) 其实这是一 ...

  10. Redis keys命令

    序号 命令及描述 1 DEL key该命令用于在 key 存在时删除 key. 2 DUMP key 序列化给定 key ,并返回被序列化的值. 3 EXISTS key 检查给定 key 是否存在. ...