题目大意:

你有$k$个数,分为$26$种

对于每个数,你可以选择选进$A$集合或者$B$集合或者不选

要求$A$集合中必须有$n$个数,$B$集合中必须有$m$个数

记第$i$种数在$A$集合中的个数为$a_i$,$B$中个数为$b_i$

试最小代价$\sum a_i * b_i$

$k \leqslant 200000$,$n, m \leqslant 30000$

首先,我们打表得出一个结论,代价一定只由一种数得出

考虑证明:

我们不妨设代价由$A$得出,且集合$S_A$和$S_B$中分别有$i$个$A$和$a - i$个$A$

那么,如果我们尝试用$B$来替换$A$,不妨设从$B$中抽了$j$个$B$扔进$A$中,且一共有$b$个$B$

那么贡献差为$i * (a - i) - ((i - j) * (a - i + j) + j * (b - j))(0 \leq j \leq min(i, b))$

化简后,为$2j^2 - j(2i - a+ b)$

这是一个开口向上的,以$j$为自变量的二次函数

最大值一定在端点取到,也就是$j = 0$或者$j = i$或者$j = b$取到

这三种情况对应着代价由$A$得出或者由$B$得出

我们可以枚举在中间的种类是哪一个

之后再枚举放在$A$中的数能取多少个

相应地我们可以知道最多可以放在$B$中多少个

可以通过背包来实现上述问题

由于实现不优,复杂度为$O(26^2 * (n+ m) + 26 * k)$

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
namespace remoon {
#define ri register int
#define tpr template <typename ra>
#define rep(iu, st, ed) for(ri iu = st; iu <= ed; iu ++)
#define drep(iu, ed, st) for(ri iu = ed; iu >= st; iu --)
#define gc getchar
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
}
int wr[], rw;
#define pc(iw) putchar(iw)
tpr inline void write(ra o, char c = '\n') {
if(!o) pc('');
if(o < ) o = -o, pc('-');
while(o) wr[++ rw] = o % , o /= ;
while(rw) pc(wr[rw --] + '');
pc(c);
}
}
using namespace std;
using namespace remoon;
#define sid 30050
#define kid 200050 char s[kid];
bool f[kid];
int n, m, k, t, cnt[]; inline int judge() {
f[] = ;
memset(f, , sizeof(f));
rep(i, , ) drep(j, k, cnt[i])
f[j] |= f[j - cnt[i]];
rep(i, n, k - m)
if(f[i]) { puts(""); return ; }
return ;
} inline void solve() {
int ans = 1e9;
rep(i, , ) {
memset(f, , (n + m) << );
f[] = ;
rep(j, , ) if(i != j)
drep(v, n + m, cnt[j]) f[v] |= f[v - cnt[j]]; rep(j, , n + m)
if(f[j]) {
int l = max(n - j, );
int r = max(m - (k - cnt[i] - j), );
if(l + r <= cnt[i]) ans = min(ans, l * r);
}
}
write(ans);
} int main() {
t = read();
while(t --) {
n = read(); m = read(); k = read();
scanf("%s", s + );
int sn = strlen(s + );
memset(cnt, , sizeof(cnt));
rep(i, , sn) ++ cnt[s[i] - 'A'];
if(judge()) continue;
solve();
}
return ;
}

CodeForces 1070J Streets and Avenues in Berhattan 性质+动态规划的更多相关文章

  1. Codeforces 1070J Streets and Avenues in Berhattan dp

    Streets and Avenues in Berhattan 我们首先能发现在最优情况下最多只有一种颜色会分别在行和列, 因为你把式子写出来是个二次函数, 在两端取极值. 然后我们就枚举哪个颜色会 ...

  2. CF 1070J Streets and Avenues in Berhattan

    DP的数组f其实开得不够大,应该开200000,但是它在cf上就是过了... 题意是把一堆字母分别分配到行和列. 分析一下,答案实际上只和n行中和m列中每种字母分配的个数有关.而且答案只和" ...

  3. 2018-2019 ICPC, NEERC J. Streets and Avenues in Berhattan(DP)

    题目链接:https://codeforc.es/contest/1070/problem/J 题意:给出一个长度为 k 的字符串,选出 n 个和 m 个不同位置的字符构成两个字符串,使得两个字符串相 ...

  4. codeforces 447E or 446C 线段树 + fib性质或二次剩余性质

    CF446C题意: 给你一个数列\(a_i\),有两种操作:区间求和:\(\sum_{i=l}^{r}(a[i]+=fib[i-l+1])\).\(fib\)是斐波那契数列. 思路 (一) codef ...

  5. Codeforces 1383C - String Transformation 2(找性质+状压 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进 ...

  6. Codeforces 1067E - Random Forest Rank(找性质+树形 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样 ...

  7. Codeforces 809C - Find a car(找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 首先拿到这类题第一步肯定要分析题目给出的矩阵有什么性质.稍微打个表即可发现题目要求的矩形是一个分形.形式化地说,该矩形可以通过以下方式生成 ...

  8. Codeforces Round #382 (Div. 2)C. Tennis Championship 动态规划

    C. Tennis Championship 题目链接 http://codeforces.com/contest/735/problem/C 题面 Famous Brazil city Rio de ...

  9. Codeforces 822D My pretty girl Noora - 线性筛 - 动态规划

    In Pavlopolis University where Noora studies it was decided to hold beauty contest "Miss Pavlop ...

随机推荐

  1. Sublime2编译Python程序EOFError:EOF when reading a line解决方法【转】

    在Sublime2中编译运行Python文件时,如果代码中包含用户输入的函数时(eg. raw_input()),Ctrl+b编译运行之后会提示以下错误: 解决方法:安装SublimeREPL打开Su ...

  2. 【转】GridView 加载空行并点击编辑每一个单元格

    代码 <script runat="server"> protectedvoid Button1_Click(object sender, System.EventAr ...

  3. 005_MAC下的VMware fushion快捷键(折中)

    由于MAC和VMware Fushion虚拟机之间有一些快捷键的映射,所以Windows虚拟机就找了一个折中的方案.现总结MAC下的win常用快捷键==> <1>最小化窗口(Alt ...

  4. wordcount在本地运行报错解决:Exception in thread "main" java.lang.UnsatisfiedLinkError:org.apache.hadoop.io.native.NativeID$Windows.access

    在windows中的intellij中运行wordcount程序,控制台输出以下报错 在Intellij编辑器中解决办法:本地重新创建NativeIO类,修改一个方法返回值,然后用新建的NativeI ...

  5. Flask:使用jsonify()转换为JSON的数据在Chrome显示为Unicode编码

    Chrome 66,Flask 1.0.2,MongoDB 3.6.3, 创建了一个Flask应用,在将MongoDB中的数据使用PyMongo包获取后,再使用jsonify转换为JSON格式发送回请 ...

  6. KVM virsh常用命令篇

    1.查看运行的虚拟机 virsh list 2.查看所有的虚拟机(关闭和运行的虚拟机) virsh list --all 3.连接虚拟机 virsh console +域名(虚拟机的名称) 4.退出虚 ...

  7. git —— bug分支

    储藏工作现场 $ git stash 切换到需要修改bug的分支,创建临时分支 修复bug,修复完提交 修复完之后,切换到需要修改的分支.完成合并 合并后删除临时分支 完成后,可以重新回到没有修改完的 ...

  8. HDU 4597 Play Game(区间DP(记忆化搜索))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4597 题目大意: 有两行卡片,每个卡片都有各自的权值. 两个人轮流取卡片,每次只能从任一行的左端或右端 ...

  9. SQL Server 管理常用的SQL和T-SQL

    1. 查看数据库的版本 select @@version 常见的几种SQL SERVER打补丁后的版本号: 8.00.194 Microsoft SQL Server 2000 8.00.384 Mi ...

  10. Shell学习笔记:#*、%*字符串掐头去尾方法

    一.语法 在shell中可以通过#.%对字符串进行掐头去尾操作,使用方法如下: # 表示掐头 % 表示去尾 单个#或%表示最小匹配 双个$或%表示最大匹配  二.例子1 假设我们定义一个变量为: fi ...