题意:给你一个H*W的字符矩阵,一次操作可以任意将两行或者两列交换。问你是否能通过任意多次操作,使得其变为对称矩阵。对称的含义是:对于任何格子A(i,j),其都等于A(H-i+1,W-j+1)。

显然,先换行还是列不影响结果,不妨假设先换行再换列。

行不必真换,只需找出哪些行成对即可,然后这些对的顺序无关,这样的方案数只有1*3*5*7*...*n,只有10000左右。

这个怎么枚举呢,假设行数是1,2,3,4,5,6,

那么就(1,2)-(3,4)-(5,6)

     -(3,5)-(4,6)

     -(3,6)-(4,5)

   (1,3)-(2,4)-(5,6)

     -(2,5)-(4,6)

     -(2,6)-(4,5)

   (1,4)-(2,3)-(5,6)

     -(2,5)-(3,6)

     -(2,6)-(3,5)

   (1,5)-(2,3)-(4,6)

     -(2,4)-(3,6)

     -(2,6)-(3,4)

   (1,6)-(2,3)-(4,5)

     -(2,4)-(3,5)

     -(2,5)-(3,4)

就每次枚举一对后,下一对(x,y)的x一定选上次空出来的第一个位子,y去枚举其他位子即可。

行数如果是奇数 类似,最后会剩下一个。

这样枚举完行,再去check列,假设列数为偶数,则每次对于一列,找是否有与其的逆序相等的列,如果有 则配对成功。最后看看是否都能配对成功。

如果列数是奇数,还必须有一列单独的回文列放在(W+1)/2列的位子。

【枚举】AtCoder Regular Contest 095 C - Symmetric Grid的更多相关文章

  1. AtCoder Regular Contest 095

    AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...

  2. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  3. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  4. AtCoder Regular Contest 102

    AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...

  5. AtCoder Regular Contest 098

    AtCoder Regular Contest 098 C - Attention 题意 给定一个只包含"E","W"字符串,可以花一的花费使他们互相转换.选定 ...

  6. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  7. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  8. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

  9. AtCoder Regular Contest 096

    AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...

随机推荐

  1. webSQL 增删改查

    webSQL 增删改查  转载于:https://www.cnblogs.com/liuhao-web/p/7866032.html /** *数据库操作辅助类,定义对象.数据操作方法都在这里定义 * ...

  2. JS获取元素内容属性以及修改

    1.通过document对象

  3. Servlet笔记6--Servlet程序改进

    第一步改进,GenericServlet: 我们目前所有放入Servlet类直接实现了javax.servlet.Servlet接口,但是这个接口中有很多方法是目前不需要的,我们可能只需要编写serv ...

  4. 18 - csv文件-ini文件处理

    目录 1 CSV文件 1.1 手动生成一个csv文件 1.2 cvs模块 1.2.1 reader方法 1.2.2 writer方法 2 ini文件处理 2.1 configparser模块 2.2 ...

  5. fc26 url

    aarch64 http://linux.yz.yamagata-u.ac.jp/pub/linux/fedora-projects/fedora-secondary/releases/26/Ever ...

  6. 八、springcloud之服务网关zuul(一)

    一.Zuul简介 zuul 是netflix开源的一个API Gateway 服务器, 本质上是一个web servlet应用. Zuul是Netflix出品的一个基于JVM路由和服务端的负载均衡器. ...

  7. Centos 软连接和硬链接

    1.软链接: 建立软链接:ln -s /usr/local/node-v4.2.6-linux-x86/bin/node /usr/local/bin/node 解释:将/usr/local/node ...

  8. liblinear和libsvm区别

    来源于知乎: 1. LibLinear是线性核,LibSVM可以扩展到非线性核(当也能用线性核,但同样在线性核条件下会比LibLinear慢很多).2. 多分类:LibLinear是one vs al ...

  9. Unix IPC之pipe

    pipe创建函数: #include <unistd.h> /* Create a one-way communication channel (pipe). If successful, ...

  10. xcode7 调用相册权限无提示

    1) 打开工程的Info.pilst: 2) 把 Bundle name 和 Bundle display name 的 value值 ,改成跟项目app名一致: 这样系统才能正确地接收到调用请求