bzoj2243 染色
Description
Input
Output
对于每个询问操作,输出一行答案。
Sample Input
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
Sample Output
1
2
HINT
数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间。
第一眼看上去肯定是树链剖分,然后就是想怎么用线段树维护区间色段。
我们用线段树维护一个区间最左边的颜色,最右边的颜色,和颜色段数。如果一个节点的左儿子的右颜色和右儿子的左颜色相同,那么它的色段数是左+右-1,否则是左+右。
但是在查询时一定要注意,跑完每一条重链,和下一条重链中的轻链时,他们在线段树上并不是一起查询的。我们需要单点找出当前重链的顶端和下一个重链的底端的颜色,如果颜色相同,那么ans-1.
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#define in(a) a=read()
#define REP(i,k,n) for(int i=k;i<=n;i++)
#define MAXN 100010
using namespace std;
inline int read(){
int x=,f=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
int n,m,a,b,d;
char c;
int input[MAXN];
int total,head[MAXN],nxt[MAXN<<],to[MAXN<<];
int depth[MAXN],size[MAXN],son[MAXN],f[MAXN];
int cnt,dfn[MAXN],top[MAXN],link[MAXN];
struct node{
int l,r,lc,rc,s,lt;
}tree[MAXN<<];
inline void adl(int a,int b){
total++;
to[total]=b;
nxt[total]=head[a];
head[a]=total;
return ;
}
inline void getson(int u,int fa){//得到重儿子
size[u]=;
for(int e=head[u];e;e=nxt[e])
if(to[e]!=fa){
depth[to[e]]=depth[u]+;
f[to[e]]=u;
getson(to[e],u);
size[u]+=size[to[e]];
if(!son[u] || size[to[e]]>size[son[u]]) son[u]=to[e];
}
return ;
}
inline void getdfn(int u,int t){//得到重边
top[u]=t;
dfn[u]=++cnt;
link[cnt]=u;
if(!son[u]) return ;
getdfn(son[u],t);
for(int e=head[u];e;e=nxt[e])
if(to[e]!=f[u] && to[e]!=son[u])
getdfn(to[e],to[e]);
return ;
}
inline void build(int i,int l,int r){//建树
tree[i].l=l;
tree[i].r=r;
if(l==r){
tree[i].s=,tree[i].lc=tree[i].rc=input[link[l]];
return ;
}
int mid=(l+r)>>;
build(i<<,l,mid);
build(i<<|,mid+,r);
if(tree[i<<].rc==tree[i<<|].lc) tree[i].s=tree[i<<].s+tree[i<<|].s-;
else tree[i].s=tree[i<<].s+tree[i<<|].s;
tree[i].lc=tree[i<<].lc;
tree[i].rc=tree[i<<|].rc;
}
inline void pushdown(int i){//下传懒标记
if(!tree[i].lt) return ;
int k=tree[i].lt;
tree[i<<].s=tree[i<<|].s=;
tree[i<<].lc=tree[i<<].rc=tree[i<<|].lc=tree[i<<|].rc=k;
tree[i<<].lt=tree[i<<|].lt=k;
tree[i].lt=;
return ;
}
inline void add(int i,int l,int r,int k){//修改颜色
if(tree[i].l>=l && tree[i].r<=r){
tree[i].s=;
tree[i].lt=tree[i].lc=tree[i].rc=k;
return ;
}
pushdown(i);
if(tree[i<<].r>=l) add(i<<,l,r,k);
if(tree[i<<|].l<=r) add(i<<|,l,r,k);
if(tree[i<<].rc==tree[i<<|].lc) tree[i].s=tree[i<<].s+tree[i<<|].s-;
else tree[i].s=tree[i<<].s+tree[i<<|].s;
tree[i].lc=tree[i<<].lc;
tree[i].rc=tree[i<<|].rc;
return ;
}
inline void updates(int x,int y,int z){//枚举两点间每一条重边
int tx=top[x],ty=top[y];
while(tx!=ty){
if(depth[tx]<depth[ty]) swap(tx,ty),swap(x,y);
add(,dfn[tx],dfn[x],z);
x=f[tx];
tx=top[x],ty=top[y];
}
if(depth[x]<depth[y]) swap(x,y);
add(,dfn[y],dfn[x],z);
}
inline int query(int i,int l,int r){//区间查询
int sum=;
if(tree[i].l>=l && tree[i].r<=r) return tree[i].s;
pushdown(i);
if(tree[i<<].r>=l) sum+=query(i<<,l,r);
if(tree[i<<|].l<=r) sum+=query(i<<|,l,r);
if(tree[i<<].r>=l && tree[i<<|].l<=r && tree[i<<].rc==tree[i<<|].lc) sum--;
return sum;
}
inline int getcolor(int i,int dis){//查询单点颜色
if(tree[i].l==tree[i].r) return tree[i].lc;
pushdown(i);
int mid=(tree[i].l+tree[i].r)>>;
if(dis<=mid) return getcolor(i<<,dis);
else return getcolor(i<<|,dis);
}
inline int getsum(int x,int y){//枚举查询时两点间的重边
int tx=top[x],ty=top[y],ans=;
while(tx!=ty){
if(depth[tx]<depth[ty]) swap(tx,ty),swap(x,y);
ans+=query(,dfn[tx],dfn[x]);
if(getcolor(,dfn[tx])==getcolor(,dfn[f[tx]])) ans--;//看轻边两点的颜色是否相同
x=f[tx];
tx=top[x],ty=top[y];
}
if(depth[x]<depth[y]) swap(x,y);
ans+=query(,dfn[y],dfn[x]);
return ans;
}
int main(){
in(n),in(m);
REP(i,,n) in(input[i]);
REP(i,,n-) in(a),in(b),adl(a,b),adl(b,a);
depth[]=;
getson(,);
getdfn(,);
build(,,n);
REP(i,,m){
cin>>c;
if(c=='C') in(a),in(b),in(d),updates(a,b,d);
if(c=='Q') in(a),in(b),printf("%d\n",getsum(a,b));
}
}
bzoj2243 染色的更多相关文章
- 刷题总结——bzoj2243染色
题目: 题目背景 SDOI2011 DAY1 T3 题目描述 给定一棵有 n 个节点的无根树和 m 个操作,操作有 2 类:1.将节点 a 到节点 b 路径上所有点都染成颜色 c :2.询问节点 a ...
- HDU5892~HDU5901 2016网络赛沈阳
A.题意: 有一个n×n的格子, 有50种怪物. 有m个操作, 每次操作会往一个矩形区域放怪物, 每个格子放相同数目的怪物, 或者查询当前50种怪物的奇偶性. 分析:用2^50表示怪物的奇偶,然后就是 ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 洛谷2486 [SDOI2011]染色 树链剖分
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2243 题目传送门 - 洛谷2486 题意概括 一棵树,共n个节点. 让你支持以下两种操作,共m次操 ...
- BZOJ2243 SDOI2011 染色 【树链剖分】
BZOJ2243 SDOI2011 染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色 ...
- 【BZOJ2243】染色(树链剖分)
题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由 ...
- bzoj2243树链剖分+染色段数
终于做了一道不是一眼出思路的代码题(⊙o⊙) 之前没有接触过这种关于染色段数的题目(其实上课好像讲过),于是百度了一下(现在思维能力好弱) 实际上每一段有用的信息就是总共有几段和两段各是什么颜色,在开 ...
- bzoj-2243 2243: [SDOI2011]染色(树链剖分)
题目链接: 2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6267 Solved: 2291 Descript ...
- [bzoj2243][SDOI2011]染色
Description 给定一棵有$n$个节点的无根树和$m$个操作,操作有$2$类: 1.将节点$a$到节点$b$路径上所有点都染成颜色$c$; 2.询问节点$a$到节点$b$路径上的颜色段数量(连 ...
随机推荐
- linux kernel的中断子系统之(三):IRQ number和中断描述符【转】
转自:http://www.wowotech.net/linux_kenrel/interrupt_descriptor.html 一.前言 本文主要围绕IRQ number和中断描述符(interr ...
- kernel 3.10内核源码分析--TLB相关--TLB概念、flush、TLB lazy模式 【转】
转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&id=4808877&uid=14528823 一.概念及基本原理 TLB ...
- fcntl函数的用法总结
fcntl系统调用可以用来对已打开的文件描述符进行各种控制操作以改变已打开文件的的各种属性 函数原型: #include<unistd.h> #include<fcntl.h&g ...
- Flask--wtforms快速使用和表单验证(附示例)
一.Form类 表单提供WTForms中最高级别的API.它们包含您的字段定义,委托验证,获取输入,聚合错误,并且通常用作将所有内容组合在一起的粘合剂. class wtforms.form.Form ...
- Flask:初见
Windows 10家庭中文版,Python 3.6.4 从Flask官网开始学起. 介绍 Flask是一个Python的Web开发微框架,基于Werkzeug.Jinja2模块(and good i ...
- 缓存数据库-redis安装和配置
一:redis安装 python操作redis分为两部分,一为安装redis程序 二是安装支持python操作redis的模块 1)安装redis redis 官方网站:http://www.redi ...
- git —— bug分支
储藏工作现场 $ git stash 切换到需要修改bug的分支,创建临时分支 修复bug,修复完提交 修复完之后,切换到需要修改的分支.完成合并 合并后删除临时分支 完成后,可以重新回到没有修改完的 ...
- SQL SERVER 收缩数据库的命令
--备份数据库 BACKUP DATABASE testdb TO DISK='d:\data\testdb20070906.bak' --清空日志 DUMP TRANSACTION testdb W ...
- Ubuntu 搭建etcd
一.简介 etcd是一个高可用的分布式键值(key-value)数据库.etcd内部采用raft协议作为一致性算法,etcd基于Go语言实现. 提供配置共享和服务发现的系统比较多,其中最为大家熟知的是 ...
- Linux学习笔记:touch新建文件、修改访问、改动时间
touch用于创建新的空文件或者修改已有文件的时间戳. 语法:touch file.txt 如果file存在,使用touch指令可更改这个文件或目录的日期时间,包括存取时间和更改时间. 如果file不 ...