算法跟传统的kmeans的区别主要在于:kmeans||的k个中心的不是随机初始化的。而是选择了k个彼此“足够”分离的中心。

org.apache.spark.mllib.clustering.KMeans
private[org.apache.spark.mllib.clustering]
def initKMeansParallel(data: RDD[VectorWithNorm]): Array[VectorWithNorm] Initialize a set of cluster centers using the k-means|| algorithm by
Bahmani et al. (Bahmani et al., Scalable K-Means++, VLDB 2012).

This is a variant of k-means++ that tries to find dissimilar cluster centers

by starting with a random center and then doing passes where more centers

are chosen with probability proportional to their squared distance to the

current cluster set. It results in a provable approximation to an optimal

clustering. The original paper can be found at

http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf.

初始中心的选择

通过几次循环来实现:

  • 随机选择一个点D_j作为初始化中心,centers={D_j}; 每个点的代价向量costs={cost_1,...}, cost_i表示第i个点的代价(距离当前最近center的距离),初始cost_i=正无穷;
  • 计算每个点到当前中心的代价:

    cost_i := min(cost_i, cost_of(Di, newCenters))

    def: cost_of 某个点到当前最近中心的距离。

    -- sum_cost = sum_i{c_i}

    -- 更新costs={cost_1,...}
  • 选择候选的中心点,对某个点Di,及其cost_i,该点被选中的概率是:

    P_i=2 * cost_i * k / sum_cost

    选择之后,形成新的newCenters.

循环执行上述2,3步骤(参数配置循环次数,默认2次)。得到一组候选点。在此基础上执行本地(非分布式)Kmeans算法,最终得到k个点作为初始化的中心点。

然后再次基础上运行传统的KMeams算法.

P_i=2 * cost_i * k / sum_cost的解释:

每个点被选中的概率正比于它跟当前最近的中心点的距离,距离越远被选中的概率越大,也就是倾向于选中更离散的点。

每次循环后选中的点的数量期望是2 * k,假设循环10次,那么期望选中20k个候选点,然后在此基础上运行local的kmeans算法选择其中k个点作为后续分布式kmeans的初始中心点集合。

KMeans|| in Spark MLLib的更多相关文章

  1. 使用 Spark MLlib 做 K-means 聚类分析[转]

    原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Lear ...

  2. spark mllib k-means算法实现

    package iie.udps.example.spark.mllib; import java.util.regex.Pattern; import org.apache.spark.SparkC ...

  3. 3 分钟学会调用 Apache Spark MLlib KMeans

    Apache Spark MLlib是Apache Spark体系中重要的一块拼图:提供了机器学习的模块.只是,眼下对此网上介绍的文章不是非常多.拿KMeans来说,网上有些文章提供了一些演示样例程序 ...

  4. Spark MLlib KMeans 聚类算法

    一.简介 KMeans 算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把分类样本点分到各个簇.然后按平均法重新计算各个簇的质心,从而确定新的簇心.一直迭代,直到簇心的移动距离小于某个给定的值. ...

  5. Spark MLlib聚类KMeans

    算法说明 聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可能相似,簇与簇之间的object尽可能相异.聚类算 ...

  6. Spark MLlib中KMeans聚类算法的解析和应用

    聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性), ...

  7. Spark Mllib里如何生成KMeans的训练样本数据、生成线性回归的训练样本数据、生成逻辑回归的训练样本数据和其他数据生成

    不多说,直接上干货! 具体,见 Spark Mllib机器学习(算法.源码及实战详解)的第2章 Spark数据操作

  8. 《Spark MLlib机器学习实践》内容简介、目录

      http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...

  9. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

随机推荐

  1. mysql转型

    1.将Int 转为varchar经常用 concat函数,比如concat(8,’0′) 得到字符串 ’80′2.将varchar 转为Int 用 cast(a as signed) a为varcha ...

  2. Docker Dockerfile 定制镜像(转)

    转自: https://yeasy.gitbooks.io/docker_practice/ 及 https://blog.csdn.net/wo18237095579/article/details ...

  3. 亲, 我们来再重申一遍"=="和"equals的区别

    今天经历的一个事情太丢脸了, 一个学弟向我请教问题, 是这样的: 一个字符串里面含有空格, 不允许使用.trim()和replace方法, 只用if和for将空格去掉, 题目很简单, 一开始我是这样写 ...

  4. SJY摆棋子&&[Violet 3]天使玩偶

    SJY摆棋子 https://www.lydsy.com/JudgeOnline/problem.php?id=2648 [Violet 3]天使玩偶 https://www.lydsy.com/Ju ...

  5. 全排列12 · Permutations

    无重复 [抄题]: Given a collection of numbers, return all possible permutations. For example,[1,2,3] have ...

  6. PHP下ajax跨域的解决方案之CORS

    由于安全的限制(同源策略,javascript只能访问同域名下的内容),如果需要进行跨域操作,那就免不了要进行跨域.   CORS(跨域资源共享,Cross-Origin Resource Shari ...

  7. 客户端、服务器端中JSON字符串与对象的转换

    客户端: 字符串转为对象:$.parseJSON(json); 对象转为字符串:JSON.stringify(_pasteDataItem) 服务器端(c#): 对象: [DataContract(N ...

  8. vue组件介绍

    https://www.cnblogs.com/Leo_wl/p/5863185.html vue.js说说组件   什么是组件:组件是Vue.js最强大的功能之一.组件可以扩展HTML元素,封装可重 ...

  9. linux CentOS 7 安装 RabbitMQ Erlang 21.0

    1. 安装erlang 安装依赖环境 yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel unixO ...

  10. Repository模式中,Update总是失败及其解析(转)

    出处:http://www.cnblogs.com/scy251147/p/3688844.html 关于Entity Framework中的Attached报错的完美解决方案终极版 前发表过一篇文章 ...