洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)
有点类似NOI2014购票
首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$
这个显然是可以斜率优化的...
$\frac {f(j)-f(k)}{dep_j-dep_k}<p_i$
$p_i$是单调的,于是可以单调队列,当遍历完一个子树的时候,必须复原单调队列到进入这棵子树前的样子,这个用可持久化线段树维护可持久化数组显然可做...
当然有更聪明的方法。
单调队列队头出去的时候实际上队列信息不会被覆盖,于是恢复左端点只要记录进入当前点前的左端点即可。
右端点可能会被覆盖,但是每次最多覆盖一个点(也就是当前点),于是恢复右端点只需要记录进入当前点前的右端点和被覆盖的值即可。
但是这么做的话无法保证一个点出队入队次数是常数级别的,也就无法保证复杂度是$O(n)$了,所以每次不能一个一个出队(一条链加一朵大菊花就可以卡了),必须二分出队位置,才可以保证复杂度,做到$O(nlogn)$。
但是出题人没有卡暴力出队的做法...我写二分比直接暴力弹出跑得快= =... 事实证明是评测机玄学...有时候跑得快有时候跑得慢
二分:
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define ll long long
using namespace std;
const int maxn=, inf=1e9;
struct poi{int too, dis, pre;}e[maxn];
int n, x, z, tot, l, r;
int p[maxn], Q[maxn], last[maxn], nowl[maxn], nowr[maxn], nowqr[maxn], q[maxn];
ll f[maxn], d[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void add(int x, int y, int z){e[++tot]=(poi){y, z, last[x]}; last[x]=tot;}
inline double xl(int j, int k){return 1.0*(f[j]-f[k])/(d[j]-d[k]);}
inline void dfs(int x)
{
nowl[x]=l;
if(l<r)
{
int L=l, R=r-;
while(L<R)
{
int mid=(L+R)>>;
if(p[x]-xl(q[mid+], q[mid])>1e-) L=mid+;
else R=mid;
}
l=(p[x]-xl(q[L], q[L+])>1e-)?L+:L;
}
nowr[x]=r;
if(x!=) f[x]=f[q[l]]+Q[x]+1ll*(d[x]-d[q[l]])*p[x];
if(l<r)
{
int L=l+, R=r;
while(L<R)
{
int mid=(L+R+)>>;
if(xl(x, q[mid])<xl(q[mid], q[mid-])) R=mid-;
else L=mid;
}
r=(xl(x, q[L])<xl(q[L-], q[L]))?L-:L;
}
nowqr[x]=q[r+]; q[++r]=x;
for(int i=last[x], too;i;i=e[i].pre) d[too=e[i].too]=d[x]+e[i].dis, dfs(too);
l=nowl[x]; q[r]=nowqr[x]; r=nowr[x];
}
int main()
{
read(n);
for(int i=;i<=n;i++) read(x), read(z), add(x, i, z), read(p[i]), read(Q[i]);
l=; r=; dfs();
for(int i=;i<=n;i++) printf("%lld\n", f[i]);
}
暴力出队:
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define ll long long
using namespace std;
const int maxn=, inf=1e9;
struct poi{int too, dis, pre;}e[maxn];
int n, x, z, tot, l, r;
int p[maxn], Q[maxn], last[maxn], nowl[maxn], nowr[maxn], nowqr[maxn], q[maxn];
ll f[maxn], d[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void add(int x, int y, int z){e[++tot]=(poi){y, z, last[x]}; last[x]=tot;}
inline double xl(int j, int k){return 1.0*(f[j]-f[k])/(d[j]-d[k]);}
inline void dfs(int x)
{
nowl[x]=l; while(l<r && p[x]-xl(q[l+], q[l])>1e-) l++;
if(x!=) f[x]=f[q[l]]+Q[x]+1ll*(d[x]-d[q[l]])*p[x];
nowr[x]=r; while(l<r && xl(x, q[r])<xl(q[r], q[r-])) r--;
nowqr[x]=q[r+]; q[++r]=x;
for(int i=last[x], too;i;i=e[i].pre) d[too=e[i].too]=d[x]+e[i].dis, dfs(too);
l=nowl[x]; q[r]=nowqr[x]; r=nowr[x];
}
int main()
{
read(n);
for(int i=;i<=n;i++) read(x), read(z), add(x, i, z), read(p[i]), read(Q[i]);
l=; r=; dfs();
for(int i=;i<=n;i++) printf("%lld\n", f[i]);
}
洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)的更多相关文章
- P3994 高速公路 树形DP+斜率优化+二分
$ \color{#0066ff}{ 题目描述 }$ C国拥有一张四通八达的高速公路网树,其中有n个城市,城市之间由一共n-1条高速公路连接.除了首都1号城市,每个城市都有一家本地的客运公司,可以发车 ...
- 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)
题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...
- bzoj3672: [Noi2014]购票(树形DP+斜率优化+可持久化凸包)
这题的加强版,多了一个$l_i$的限制,少了一个$p_i$的单调性,难了好多... 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ $\frac {f(j) ...
- 洛谷P2365 任务安排(斜率优化dp)
传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
- 洛谷4072 SDOI2016征途 (斜率优化+dp)
首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...
- Codeforces 1179D 树形DP 斜率优化
题意:给你一颗树,你可以在树上添加一条边,问添加一条边之后的简单路径最多有多少条?简单路径是指路径中的点只没有重复. 思路:添加一条边之后,树变成了基环树.容易发现,以基环上的点为根的子树的点中的简单 ...
- 洛谷P4072 [SDOI2016]征途(斜率优化)
传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...
- 洛谷3571 POI2014 SUP-Supercomputer (斜率优化)
一道神仙好题. 首先看到有多组\(k\),第一反应就是离线. 考虑贪心. 我们每次一定是尽量选择有儿子的节点.以便于我们下一次扩展. 但是对于一个\(k\),每次贪心的复杂度是\(O(n)\) 总复杂 ...
随机推荐
- 织梦调用多个栏目typeid="1,2,3"不支持的解决方法
织梦arclist调用副栏目不显示的解决办法: 打开/include/taglib/arclist.lib.php,代码约位于295-296行,查找以下两行代码: if($CrossID=='') $ ...
- 搭建 Digital Ocean 服务器
作为程序员,搭建属于自己的服务器可以部署自己的网站,可以配置代理***,了解国际前沿科技:一些高性能的服务器还可以完成一些云计算.深度学习模型的训练任务. DigitalOcean 服务启动 注册 D ...
- VirtualBox共享文件夹 Windows 7 (宿主机) + Ubuntu 12.04
1 安装增强功能包1.1 运行Ubuntu并登陆,菜单“设备”->“安装增强功能包(Install Guest Additions)”ubun1.2 桌面上会多出一个光盘图标,光盘默认自动加载到 ...
- (第六周)课上Scrum站立会议演示
组名:连连看 组长:张政 组员:张金生.李权.武志远 时间:2016.10.13 20:20——20:40 会议内容: 已完成的内容: 1.选定编译语言,安装软件并配置环境,完成了游戏的基本模型. ...
- 实验三:敏捷开发与XP实践
Java实验三报告 一. 实验内容 (一)敏捷开发与XP 内容:1.敏捷开发(Agile Development)是一种以人为核心.迭代.循序渐进的开发方法. 2.极限编程(eXtreme Pro ...
- IT行业的个人见解
IT这个行业是近代历史上的新新行业,它的就业前景是非常的好的,就业率高,但是这个行业的需求人才精英不是那些半桶水的所谓IT男.我现在学习的是计算机专业中的软件工程目标是成为一名合格的软件工程师,软件工 ...
- web_custom_request和web_submit_data
网络上很多说明这2个函数区别的文章,我就从其他摘抄了内容,其中区别自己查看附录,我主要说明2点 (1)用web_custom_request提交请求如果是json,则会会使用关键字符{},但是{},是 ...
- 正则化项L1和L2
本文从以下六个方面,详细阐述正则化L1和L2: 一. 正则化概述 二. 稀疏模型与特征选择 三. 正则化直观理解 四. 正则化参数选择 五. L1和L2正则化区别 六. 正则化问题讨论 一. 正则化概 ...
- Collection List区别
Collection是无序的,比如一大群人在广场上,你不可能说某某人是第一个,某某人是第二个 List是有序的,比如一群人从高到矮排了队,你就能说这人是第一个,这人是最后一个 因此Collection ...
- C# 调用 taskkill命令结束服务进程
获取服务映像名称 windows服务安装后会在注册表中存储服务信息,路径是HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\[服务名称] 通过I ...