IO多路复用

I/O多路复用指:通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。

Linux

Linux中的 select,poll,epoll 都是IO多路复用的机制。

select

select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中就绪的文件描述符便会被内核修改标志位,使得进程可以获得这些文件描述符从而进行后续的读写操作。
select目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点,事实上从现在看来,这也是它所剩不多的优点之一。
select的一个缺点在于单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,不过可以通过修改宏定义甚至重新编译内核的方式提升这一限制。
另外,select()所维护的存储大量文件描述符的数据结构,随着文件描述符数量的增大,其复制的开销也线性增长。同时,由于网络响应时间的延迟使得大量TCP连接处于非活跃状态,但调用select()会对所有socket进行一次线性扫描,所以这也浪费了一定的开销。 poll poll在1986年诞生于System V Release 3,它和select在本质上没有多大差别,但是poll没有最大文件描述符数量的限制。
poll和select同样存在一个缺点就是,包含大量文件描述符的数组被整体复制于用户态和内核的地址空间之间,而不论这些文件描述符是否就绪,它的开销随着文件描述符数量的增加而线性增大。
另外,select()和poll()将就绪的文件描述符告诉进程后,如果进程没有对其进行IO操作,那么下次调用select()和poll()的时候将再次报告这些文件描述符,所以它们一般不会丢失就绪的消息,这种方式称为水平触发(Level Triggered)。 epoll 直到Linux2.6才出现了由内核直接支持的实现方法,那就是epoll,它几乎具备了之前所说的一切优点,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。
epoll可以同时支持水平触发和边缘触发(Edge Triggered,只告诉进程哪些文件描述符刚刚变为就绪状态,它只说一遍,如果我们没有采取行动,那么它将不会再次告知,这种方式称为边缘触发),理论上边缘触发的性能要更高一些,但是代码实现相当复杂。
epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。
另一个本质的改进在于epoll采用基于事件的就绪通知方式。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。

Python

Python中有一个select模块,其中提供了:select、poll、epoll三个方法,分别调用系统的 select,poll,epoll 从而实现IO多路复用。

 Windows Python:
提供: select
Mac Python:
提供: select
Linux Python:
提供: select、poll、epoll

注意:网络操作、文件操作、终端操作等均属于IO操作,对于windows只支持Socket操作,其他系统支持其他IO操作,但是无法检测 普通文件操作 自动上次读取是否已经变化。

对于select方法:

 句柄列表11, 句柄列表22, 句柄列表33 = select.select(句柄序列1, 句柄序列2, 句柄序列3, 超时时间)

 参数: 可接受四个参数(前三个必须)
返回值:三个列表 select方法用来监视文件句柄,如果句柄发生变化,则获取该句柄。
1、当 参数1 序列中的句柄发生可读时(accetp和read),则获取发生变化的句柄并添加到 返回值1 序列中
2、当 参数2 序列中含有句柄时,则将该序列中所有的句柄添加到 返回值2 序列中
3、当 参数3 序列中的句柄发生错误时,则将该发生错误的句柄添加到 返回值3 序列中
4、当 超时时间 未设置,则select会一直阻塞,直到监听的句柄发生变化
当 超时时间 = 1时,那么如果监听的句柄均无任何变化,则select会阻塞 1 秒,之后返回三个空列表,如果监听的句柄有变化,则直接执行。
#!/usr/bin/env python
# -*- coding:utf-8 -*- import select
import threading
import sys while True:
readable, writeable, error = select.select([sys.stdin,],[],[],1)
if sys.stdin in readable:
print 'select get stdin',sys.stdin.readline()

利用select监听终端操作实例

#!/usr/bin/env python
# -*- coding:utf-8 -*- import socket
import select sk1 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sk1.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sk1.bind(('127.0.0.1',8002))
sk1.listen(5)
sk1.setblocking(0) inputs = [sk1,] while True:
readable_list, writeable_list, error_list = select.select(inputs, [], inputs, 1)
for r in readable_list:
# 当客户端第一次连接服务端时
if sk1 == r:
print 'accept'
request, address = r.accept()
request.setblocking(0)
inputs.append(request)
# 当客户端连接上服务端之后,再次发送数据时
else:
received = r.recv(1024)
# 当正常接收客户端发送的数据时
if received:
print 'received data:', received
# 当客户端关闭程序时
else:
inputs.remove(r) sk1.close()

利用select实现伪同时处理多个Socket客户端请求:服务端

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import socket ip_port = ('127.0.0.1',8002)
sk = socket.socket()
sk.connect(ip_port) while True:
inp = raw_input('please input:')
sk.sendall(inp)
sk.close()

利用select实现伪同时处理多个Socket客户端请求:客户端

此处的Socket服务端相比与原生的Socket,他支持当某一个请求不再发送数据时,服务器端不会等待而是可以去处理其他请求的数据。但是,如果每个请求的耗时比较长时,select版本的服务器端也无法完成同时操作。

SocketServer模块

SocketServer内部使用 IO多路复用 以及 “多线程” 和 “多进程” ,从而实现并发处理多个客户端请求的Socket服务端。即:每个客户端请求连接到服务器时,Socket服务端都会在服务器是创建一个“线程”或者“进程” 专门负责处理当前客户端的所有请求。

ThreadingTCPServer

ThreadingTCPServer实现的Soket服务器内部会为每个client创建一个 “线程”,该线程用来和客户端进行交互。

1、ThreadingTCPServer基础

使用ThreadingTCPServer:

  • 创建一个继承自 SocketServer.BaseRequestHandler 的类
  • 类中必须定义一个名称为 handle 的方法
  • 启动ThreadingTCPServer
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self):
# print self.request,self.client_address,self.server
conn = self.request
conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.')
Flag = True
while Flag:
data = conn.recv(1024)
if data == 'exit':
Flag = False
elif data == '':
conn.sendall('通过可能会被录音.balabala一大推')
else:
conn.sendall('请重新输入.') if __name__ == '__main__':
server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyServer)
server.serve_forever()

SocketServer实现服务器

#!/usr/bin/env python
# -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009)
sk = socket.socket()
sk.connect(ip_port)
sk.settimeout(5) while True:
data = sk.recv(1024)
print 'receive:',data
inp = raw_input('please input:')
sk.sendall(inp)
if inp == 'exit':
break sk.close()

客户端

2、ThreadingTCPServer源码剖析

ThreadingTCPServer的类图关系如下:

内部调用流程为:

  • 启动服务端程序
  • 执行 TCPServer.__init__ 方法,创建服务端Socket对象并绑定 IP 和 端口
  • 执行 BaseServer.__init__ 方法,将自定义的继承自SocketServer.BaseRequestHandler 的类 MyRequestHandle赋值给 self.RequestHandlerClass
  • 执行 BaseServer.server_forever 方法,While 循环一直监听是否有客户端请求到达 ...
  • 当客户端连接到达服务器
  • 执行 ThreadingMixIn.process_request 方法,创建一个 “线程” 用来处理请求
  • 执行 ThreadingMixIn.process_request_thread 方法
  • 执行 BaseServer.finish_request 方法,执行 self.RequestHandlerClass()  即:执行 自定义 MyRequestHandler 的构造方法(自动调用基类BaseRequestHandler的构造方法,在该构造方法中又会调用 MyRequestHandler的handle方法)

ThreadingTCPServer相关源码:

class BaseServer:

    """Base class for server classes.

    Methods for the caller:

    - __init__(server_address, RequestHandlerClass)
- serve_forever(poll_interval=0.5)
- shutdown()
- handle_request() # if you do not use serve_forever()
- fileno() -> int # for select() Methods that may be overridden: - server_bind()
- server_activate()
- get_request() -> request, client_address
- handle_timeout()
- verify_request(request, client_address)
- server_close()
- process_request(request, client_address)
- shutdown_request(request)
- close_request(request)
- handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or
instances: - timeout
- address_family
- socket_type
- allow_reuse_address Instance variables: - RequestHandlerClass
- socket """ timeout = None def __init__(self, server_address, RequestHandlerClass):
"""Constructor. May be extended, do not override."""
self.server_address = server_address
self.RequestHandlerClass = RequestHandlerClass
self.__is_shut_down = threading.Event()
self.__shutdown_request = False def server_activate(self):
"""Called by constructor to activate the server. May be overridden. """
pass def serve_forever(self, poll_interval=0.5):
"""Handle one request at a time until shutdown. Polls for shutdown every poll_interval seconds. Ignores
self.timeout. If you need to do periodic tasks, do them in
another thread.
"""
self.__is_shut_down.clear()
try:
while not self.__shutdown_request:
# XXX: Consider using another file descriptor or
# connecting to the socket to wake this up instead of
# polling. Polling reduces our responsiveness to a
# shutdown request and wastes cpu at all other times.
r, w, e = _eintr_retry(select.select, [self], [], [],
poll_interval)
if self in r:
self._handle_request_noblock()
finally:
self.__shutdown_request = False
self.__is_shut_down.set() def shutdown(self):
"""Stops the serve_forever loop. Blocks until the loop has finished. This must be called while
serve_forever() is running in another thread, or it will
deadlock.
"""
self.__shutdown_request = True
self.__is_shut_down.wait() # The distinction between handling, getting, processing and
# finishing a request is fairly arbitrary. Remember:
#
# - handle_request() is the top-level call. It calls
# select, get_request(), verify_request() and process_request()
# - get_request() is different for stream or datagram sockets
# - process_request() is the place that may fork a new process
# or create a new thread to finish the request
# - finish_request() instantiates the request handler class;
# this constructor will handle the request all by itself def handle_request(self):
"""Handle one request, possibly blocking. Respects self.timeout.
"""
# Support people who used socket.settimeout() to escape
# handle_request before self.timeout was available.
timeout = self.socket.gettimeout()
if timeout is None:
timeout = self.timeout
elif self.timeout is not None:
timeout = min(timeout, self.timeout)
fd_sets = _eintr_retry(select.select, [self], [], [], timeout)
if not fd_sets[0]:
self.handle_timeout()
return
self._handle_request_noblock() def _handle_request_noblock(self):
"""Handle one request, without blocking. I assume that select.select has returned that the socket is
readable before this function was called, so there should be
no risk of blocking in get_request().
"""
try:
request, client_address = self.get_request()
except socket.error:
return
if self.verify_request(request, client_address):
try:
self.process_request(request, client_address)
except:
self.handle_error(request, client_address)
self.shutdown_request(request) def handle_timeout(self):
"""Called if no new request arrives within self.timeout. Overridden by ForkingMixIn.
"""
pass def verify_request(self, request, client_address):
"""Verify the request. May be overridden. Return True if we should proceed with this request. """
return True def process_request(self, request, client_address):
"""Call finish_request. Overridden by ForkingMixIn and ThreadingMixIn. """
self.finish_request(request, client_address)
self.shutdown_request(request) def server_close(self):
"""Called to clean-up the server. May be overridden. """
pass def finish_request(self, request, client_address):
"""Finish one request by instantiating RequestHandlerClass."""
self.RequestHandlerClass(request, client_address, self) def shutdown_request(self, request):
"""Called to shutdown and close an individual request."""
self.close_request(request) def close_request(self, request):
"""Called to clean up an individual request."""
pass def handle_error(self, request, client_address):
"""Handle an error gracefully. May be overridden. The default is to print a traceback and continue. """
print '-'*40
print 'Exception happened during processing of request from',
print client_address
import traceback
traceback.print_exc() # XXX But this goes to stderr!
print '-'*40 BaseServer

BaseServer

class TCPServer(BaseServer):

    """Base class for various socket-based server classes.

    Defaults to synchronous IP stream (i.e., TCP).

    Methods for the caller:

    - __init__(server_address, RequestHandlerClass, bind_and_activate=True)
- serve_forever(poll_interval=0.5)
- shutdown()
- handle_request() # if you don't use serve_forever()
- fileno() -> int # for select() Methods that may be overridden: - server_bind()
- server_activate()
- get_request() -> request, client_address
- handle_timeout()
- verify_request(request, client_address)
- process_request(request, client_address)
- shutdown_request(request)
- close_request(request)
- handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or
instances: - timeout
- address_family
- socket_type
- request_queue_size (only for stream sockets)
- allow_reuse_address Instance variables: - server_address
- RequestHandlerClass
- socket """ address_family = socket.AF_INET socket_type = socket.SOCK_STREAM request_queue_size = 5 allow_reuse_address = False def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True):
"""Constructor. May be extended, do not override."""
BaseServer.__init__(self, server_address, RequestHandlerClass)
self.socket = socket.socket(self.address_family,
self.socket_type)
if bind_and_activate:
try:
self.server_bind()
self.server_activate()
except:
self.server_close()
raise def server_bind(self):
"""Called by constructor to bind the socket. May be overridden. """
if self.allow_reuse_address:
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.bind(self.server_address)
self.server_address = self.socket.getsockname() def server_activate(self):
"""Called by constructor to activate the server. May be overridden. """
self.socket.listen(self.request_queue_size) def server_close(self):
"""Called to clean-up the server. May be overridden. """
self.socket.close() def fileno(self):
"""Return socket file number. Interface required by select(). """
return self.socket.fileno() def get_request(self):
"""Get the request and client address from the socket. May be overridden. """
return self.socket.accept() def shutdown_request(self, request):
"""Called to shutdown and close an individual request."""
try:
#explicitly shutdown. socket.close() merely releases
#the socket and waits for GC to perform the actual close.
request.shutdown(socket.SHUT_WR)
except socket.error:
pass #some platforms may raise ENOTCONN here
self.close_request(request) def close_request(self, request):
"""Called to clean up an individual request."""
request.close()

TcpServer

class ThreadingMixIn:
"""Mix-in class to handle each request in a new thread.""" # Decides how threads will act upon termination of the
# main process
daemon_threads = False def process_request_thread(self, request, client_address):
"""Same as in BaseServer but as a thread. In addition, exception handling is done here. """
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request) def process_request(self, request, client_address):
"""Start a new thread to process the request."""
t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start() ThreadingMixIn

ThreadingMixIn

class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass

ThreadingTCPServer

实例:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self):
# print self.request,self.client_address,self.server
conn = self.request
conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.')
Flag = True
while Flag:
data = conn.recv(1024)
if data == 'exit':
Flag = False
elif data == '':
conn.sendall('通过可能会被录音.balabala一大推')
else:
conn.sendall('请重新输入.') if __name__ == '__main__':
server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyServer)
server.serve_forever() 服务端

服务端

#!/usr/bin/env python
# -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009)
sk = socket.socket()
sk.connect(ip_port)
sk.settimeout(5) while True:
data = sk.recv(1024)
print 'receive:',data
inp = raw_input('please input:')
sk.sendall(inp)
if inp == 'exit':
break sk.close() 客户端

客户端

源码精简:

import socket
import threading
import select def process(request, client_address):
print request,client_address
conn = request
conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.')
flag = True
while flag:
data = conn.recv(1024)
if data == 'exit':
flag = False
elif data == '':
conn.sendall('通过可能会被录音.balabala一大推')
else:
conn.sendall('请重新输入.') sk = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sk.bind(('127.0.0.1',8002))
sk.listen(5) while True:
r, w, e = select.select([sk,],[],[],1)
print 'looping'
if sk in r:
print 'get request'
request, client_address = sk.accept()
t = threading.Thread(target=process, args=(request, client_address))
t.daemon = False
t.start() sk.close()

源码精简

如精简代码可以看出,SocketServer的ThreadingTCPServer之所以可以同时处理请求得益于 select 和 Threading 两个东西,其实本质上就是在服务器端为每一个客户端创建一个线程,当前线程用来处理对应客户端的请求,所以,可以支持同时n个客户端链接(长连接)。

ForkingTCPServer

ForkingTCPServer和ThreadingTCPServer的使用和执行流程基本一致,只不过在内部分别为请求者建立 “线程”  和 “进程”。

基本使用:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self):
# print self.request,self.client_address,self.server
conn = self.request
conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.')
Flag = True
while Flag:
data = conn.recv(1024)
if data == 'exit':
Flag = False
elif data == '':
conn.sendall('通过可能会被录音.balabala一大推')
else:
conn.sendall('请重新输入.') if __name__ == '__main__':
server = SocketServer.ForkingTCPServer(('127.0.0.1',8009),MyServer)
server.serve_forever() 服务端

服务端

#!/usr/bin/env python
# -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009)
sk = socket.socket()
sk.connect(ip_port)
sk.settimeout(5) while True:
data = sk.recv(1024)
print 'receive:',data
inp = raw_input('please input:')
sk.sendall(inp)
if inp == 'exit':
break sk.close() 客户端

客户端

以上ForkingTCPServer只是将 ThreadingTCPServer 实例中的代码:

 server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyRequestHandler)
变更为:
server = SocketServer.ForkingTCPServer(('127.0.0.1',8009),MyRequestHandler)

SocketServer的ThreadingTCPServer之所以可以同时处理请求得益于 select 和 os.fork 两个东西,其实本质上就是在服务器端为每一个客户端创建一个进程,当前新创建的进程用来处理对应客户端的请求,所以,可以支持同时n个客户端链接(长连接)。

源码剖析参考 ThreadingTCPServer

Twisted

Twisted是一个事件驱动的网络框架,其中包含了诸多功能,例如:网络协议、线程、数据库管理、网络操作、电子邮件等。

事件驱动

简而言之,事件驱动分为二个部分:第一,注册事件;第二,触发事件。

自定义事件驱动框架,命名为:“弑君者”:

#!/usr/bin/env python
# -*- coding:utf-8 -*- # event_drive.py event_list = [] def run():
for event in event_list:
obj = event()
obj.execute() class BaseHandler(object):
"""
用户必须继承该类,从而规范所有类的方法(类似于接口的功能)
"""
def execute(self):
raise Exception('you must overwrite execute') 事件驱动框架

事件驱动框架

程序员使用“弑君者框架”:

#!/usr/bin/env python
# -*- coding:utf-8 -*- from source import event_drive class MyHandler(event_drive.BaseHandler): def execute(self):
print 'event-drive execute MyHandler' event_drive.event_list.append(MyHandler)
event_drive.run()

如上述代码,事件驱动只不过是框架规定了执行顺序,程序员在使用框架时,可以向原执行顺序中注册“事件”,从而在框架执行时可以出发已注册的“事件”。

基于事件驱动Socket

 #!/usr/bin/env python
# -*- coding:utf-8 -*- from twisted.internet import protocol
from twisted.internet import reactor class Echo(protocol.Protocol):
def dataReceived(self, data):
self.transport.write(data) def main():
factory = protocol.ServerFactory()
factory.protocol = Echo reactor.listenTCP(8000,factory)
reactor.run() if __name__ == '__main__':
main()

程序执行流程:

  • 运行服务端程序
  • 创建Protocol的派生类Echo
  • 创建ServerFactory对象,并将Echo类封装到其protocol字段中
  • 执行reactor的 listenTCP 方法,内部使用 tcp.Port 创建socket server对象,并将该对象添加到了 reactor的set类型的字段 _read 中
  • 执行reactor的 run 方法,内部执行 while 循环,并通过 select 来监视 _read 中文件描述符是否有变化,循环中...
  • 客户端请求到达
  • 执行reactor的 _doReadOrWrite 方法,其内部通过反射调用 tcp.Port 类的 doRead 方法,内部 accept 客户端连接并创建Server对象实例(用于封装客户端socket信息)和 创建 Echo 对象实例(用于处理请求) ,然后调用 Echo 对象实例的 makeConnection 方法,创建连接。
  • 执行 tcp.Server 类的 doRead 方法,读取数据,
  • 执行 tcp.Server 类的 _dataReceived 方法,如果读取数据内容为空(关闭链接),否则,出发 Echo 的 dataReceived 方法
  • 执行 Echo 的 dataReceived 方法

从源码可以看出,上述实例本质上使用了事件驱动的方法 和 IO多路复用的机制来进行Socket的处理。

#!/usr/bin/env python
# -*- coding:utf-8 -*- from twisted.internet import reactor, protocol
from twisted.web.client import getPage
from twisted.internet import reactor
import time class Echo(protocol.Protocol): def dataReceived(self, data):
deferred1 = getPage('http://cnblogs.com')
deferred1.addCallback(self.printContents) deferred2 = getPage('http://baidu.com')
deferred2.addCallback(self.printContents) for i in range(2):
time.sleep(1)
print 'execute ',i def execute(self,data):
self.transport.write(data) def printContents(self,content):
print len(content),content[0:100],time.time() def main(): factory = protocol.ServerFactory()
factory.protocol = Echo reactor.listenTCP(8000,factory)
reactor.run() if __name__ == '__main__':
main() 异步IO操作

异步IO操作

参考:http://www.cnblogs.com/wupeiqi/articles/5040823.html

Python之socket(套接字)补充的更多相关文章

  1. Python进阶----SOCKET套接字基础, 客户端与服务端通信, 执行远端命令.

    Python进阶----SOCKET套接字基础, 客户端与服务端通信, 执行远端命令. 一丶socket套接字 什么是socket套接字: ​ ​  ​ 专业理解: socket是应用层与TCP/IP ...

  2. python 29 Socket - 套接字

    目录 Socket - 套接字 Socket - 套接字 应用层与TCP/IP协议族通信层(或传输层)之间的抽象层,是一组接口()接收数据:当接口接收数据之后,交由操作系统: 如果数据与操作系统直接交 ...

  3. socket套接字补充、操作系统发展史、进程

    目录 socket套接字之UDP协议 操作系统的发展史 手工操作 批处理系统 联机批处理系统 脱机批处理系统 多道技术 进程理论 并发与并行 同步与异步 阻塞与非阻塞 同步异步与阻塞非阻塞总结 soc ...

  4. 全网最详细python中socket套接字send与sendall的区别

    将数据发送到套接字. 套接字必须连接到远程套接字.  返回发送的字节数. 应用程序负责检查是否已发送所有数据; 如果仅传输了一些数据, 则应用程序需要尝试传递剩余数据.(需要用户自己完成) 将数据发送 ...

  5. python开发socket套接字:套接字&通信循环&链接循环&模拟远程命令

    一,套接字 先从服务器端说起.服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接.在这时如果有个客户端初始化一个Socket ...

  6. python TCP socket套接字编程以及注意事项

    TCPServer.py #coding:utf-8 import socket #s 等待链接 #c 实时通讯 s = socket.socket(socket.AF_INET,socket.SOC ...

  7. python开发socket套接字:粘包问题&udp套接字&socketserver

    一,发生粘包 服务器端 from socket import * phone=socket(AF_INET,SOCK_STREAM) #套接字 phone.setsockopt(SOL_SOCKET, ...

  8. python基础--socket套接字、粘包问题

    本地回环地址:127.0.0.1 简易版服务端: import socket ​ server = socket.socket() # 就比如买了一个手机 server.bind(("127 ...

  9. Python Web学习笔记之socket套接字

    套接字是为特定网络协议(例如TCP/IP,ICMP/IP,UDP/IP等)套件对上的网络应用程序提供者提供当前可移植标准的对象.它们允许程序接受并进行连接,如发送和接受数据.为了建立通信通道,网络通信 ...

  10. Python开发基础-Day23try异常处理、socket套接字基础1

    异常处理 错误 程序里的错误一般分为两种: 1.语法错误,这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正 2.逻辑错误,人为造成的错误,如数据类型错误.调用方法错误等,这些解 ...

随机推荐

  1. 2017秋-软件工程第十二次作业(一)-PSP总结

    [回顾]:回顾开学时的博客并回答相关问题 1.回想一下你曾经对计算机专业的畅想当初你是如何做出选择计算机专业的决定的?经过一个学期,你的看法改变了么,为什么?答:当初的决定是以前的事情,没有改变.经历 ...

  2. 20172319 2018.04.11-16 《Java程序设计教程》 第6周学习总结

    20172319 2018.04.11-16 <Java程序设计教程>第6周学习总结 目录 教材学习内容总结 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周考试错题 ...

  3. 20172324《Java程序设计》第3周学习总结

    20172324<Java程序设计>第3周学习总结 教材学习内容总结 随机数,记住要返回的是指定的字符前一个. String类型的一些用法,例如concat(连接),toUpperCase ...

  4. GITHUB随笔 15-5月 junit

    junit 是用来做单元测试的一个工具  测试是一个持续的过程.也就是说测试贯穿与开发的整个过程中,单元测试尤其适合于迭代增量式的开发过程. @ignore:   该元数据标记的测试方法在测试中会被忽 ...

  5. 凡事预则立|项目Beta冲刺准备

    1.讨论组长是否重选的议题和结论. 组员一致认为组长不需要重选,我们都很认可组长的表现,组长的付出我们都看在眼里,我们找不出更适合担任组长的人选. 2.下一阶段需要改进完善的功能. 财富值的布局优化以 ...

  6. 团队作业7——第二次项目冲刺(Beta版本12.07——12.08)

    1.当天站立式会议照片 本次会议在5号公寓3楼召开,本次会议内容:①:熟悉每个人想做的模块.②:根据项目要求还没做的完成. 2.每个人的工作 经过会议讨论后确定了每个人的分工 组员 任务 陈福鹏 实现 ...

  7. 1014 C语言文法定义

    <程序>→<外部声明>|<程序><外部声明><外部声明>→<函数定义>|<声明><函数定义>→<数 ...

  8. JabRef学习笔记(一)

    JabRef简介 JabRef is an open source bibliography reference manager. The native file format used by Jab ...

  9. ie6 ie7 userdata 本地存储 引发的惨案.

    我使用 documentElement 作为userdata 作为本地存储的载体. document.documentElement.addBehavior("#default#userda ...

  10. MySQL 5.6 & 5.7最优配置文件模板

    Inside君整理了一份最新基于MySQL 5.6和5.7的配置文件模板,基本上可以说覆盖90%的调优选项,用户只需根据自己的服务器配置稍作修改即可,如InnoDB缓冲池的大小.IO能力(innodb ...