彻底理解 Python 生成器
1. 生成器定义
在Python中,一边循环一边计算的机制,称为生成器:generator。
2. 为什么要有生成器
列表所有数据都在内存中,如果有海量数据的话将会非常耗内存。
如:仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
如果列表元素按照某种算法推算出来,那我们就可以在循环的过程中不断推算出后续的元素,这样就不必创建完整的list,从而节省大量的空间。
简单一句话:我又想要得到庞大的数据,又想让它占用空间少,那就用生成器!
3.如何创建生成器
第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
方法二, 如果一个函数中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator。调用函数就是创建了一个生成器(generator)对象。
4. 生成器的工作原理
(1)生成器(generator)能够迭代的关键是它有一个next()方法,
工作原理就是通过重复调用next()方法,直到捕获一个异常。
(2)带有 yield 的函数不再是一个普通函数,而是一个生成器generator。
可用next()调用生成器对象来取值。next 两种方式 t.__next__() | next(t)。
可用for 循环获取返回值(每执行一次,取生成器里面一个值)
(基本上不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代)。
(3)yield相当于 return 返回一个值,并且记住这个返回的位置,下次迭代时,代码从yield的下一条语句开始执行。
(4).send() 和next()一样,都能让生成器继续往下走一步(下次遇到yield停),但send()能传一个值,这个值作为yield表达式整体的结果
——换句话说,就是send可以强行修改上一个yield表达式值。比如函数中有一个yield赋值,a = yield 5,第一次迭代到这里会返回5,a还没有赋值。第二次迭代时,使用.send(10),那么,就是强行修改yield 5表达式的值为10,本来是5的,那么a=10
感受下yield返回值的过程(关注点:每次停在哪,下次又开始在哪)及send()传参的通讯过程,
思考None是如何产生的(第一次取值:yield 返回了 i 值 0,停在yield i,temp没赋到值。第二次取值,开始在print,temp没被赋值,故打印None,i加1,继续while判断,yield 返回了 i 值 1,停在yield i):
好了,话不多说,翠花,上栗子:
#encoding:UTF-8
def yield_test(n):
for i in range(n):
yield call(i)
print("i=",i)
print("Done.") def call(i):
return i*2 for i in yield_test(5):
print(i,",")
结果:
>>>
0 ,
i= 0
2 ,
i= 1
4 ,
i= 2
6 ,
i= 3
8 ,
i= 4
Done.
>>>
理解的关键在于:下次迭代时,代码从yield的下一条语句开始执行。
总结:
什么是生成器?
生成器仅仅保存了一套生成数值的算法,并且没有让这个算法现在就开始执行,而是我什么时候调它,它什么时候开始计算一个新的值,并给你返回。
练习题:
def count_down(n):
while n >= 0:
newn = yield n
print('newn', newn)
if newn:
print('if')
n = newn
print('n =', n)
else:
n -= 1 cd = count_down(5)
for i in cd:
print(i, ',')
if i == 5:
cd.send(3)
结果:
彻底理解 Python 生成器的更多相关文章
- 深入理解Python生成器(Generator)
我们可以通过列表生成式简单直接地创建一个列表,但是受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,而且如果我们仅仅需要访问前面几个元素,那后面绝大多 ...
- 完全理解 Python 迭代对象、迭代器、生成器(转)
完全理解 Python 迭代对象.迭代器.生成器 本文源自RQ作者的一篇博文,原文是Iterables vs. Iterators vs. Generators » nvie.com,俺写的这篇文章是 ...
- 完全理解 Python 迭代对象、迭代器、生成器
完全理解 Python 迭代对象.迭代器.生成器 2017/05/29 · 基础知识 · 9 评论 · 可迭代对象, 生成器, 迭代器 分享到: 原文出处: liuzhijun 本文源自RQ作者 ...
- 怎么理解Python迭代器与生成器?
怎么理解Python迭代器与生成器?在Python中,使用for ... in ... 可以对list.tuple.set和dict数据类型进行迭代,可以把所有数据都过滤出来.如下: ...
- 深入理解python的yield和generator
原文发表在我的博客主页,转载请注明出处 前言 没有用过的东西,没有深刻理解的东西很难说自己会,而且被别人一问必然破绽百出.虽然之前有接触过python协程的概念,但是只是走马观花,这两天的一次交谈中, ...
- python——生成器
python——生成器 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个 ...
- 深入理解 Python 异步编程(上)
http://python.jobbole.com/88291/ 前言 很多朋友对异步编程都处于"听说很强大"的认知状态.鲜有在生产项目中使用它.而使用它的同学,则大多数都停留在知 ...
- 深入理解Python异步编程(上)
本文代码整理自:深入理解Python异步编程(上) 参考:A Web Crawler With asyncio Coroutines 一.同步阻塞方式 import socket def blocki ...
- python生成器(generator)、迭代器(iterator)、可迭代对象(iterable)区别
三者联系 迭代器(iterator)是一个更抽象的概念,任何对象,如果它的类有next方法(next python3)和__iter__方法返回自己本身,即为迭代器 通常生成器是通过调用一个或多个yi ...
随机推荐
- js备忘录1
新建对象 赋值和取值操作 var book={ topic:"JavaScript", fat: true }; book.topic 通过点访问 book["fat& ...
- maven学习资料(三)
两个项目聚合到一个项目中: .
- js/jquery去掉空格,回车,换行示例代码
Jquery: $("#accuracy").val($("#accuracy").val().replace(/\ +/g,""));// ...
- Teamproject Week7 --Scrum Meeting #1 2014.10.28
这是团队的第一次会议,具体议题如下: 1)我们明确了团队成员的职责所需: PM职责:根据项目范围.质量.时间与成本的综合因素的考虑,进行项目的总体规划与阶段计划. 控制项目组各成员的工作进度,即时了 ...
- 20145214 《网络对抗技术》 MSF基础应用
20145214 <网络对抗技术> MSF基础应用 1.实验后回答问题--用自己的话解释什么是exploit,payload,encode 如果把MSF比作一把枪的话,payload应该是 ...
- iOS自学-UILabel常见属性
#import "ViewController.h" #import <CoreText/CoreText.h> @interface ViewController ( ...
- java8之重新认识HashMap(转自美团技术团队)
java8之重新认识HashMap 摘要 HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型.随着JDK(JavaDevelopmet Kit)版本的更新,JDK1.8对Ha ...
- 解决tomcat登录需要给角色授权
1:编辑/usr/local/tomcat/conf/tomcat-users.xml文件,在没有注释的内容中添加: <role rolename="manager-gui" ...
- vue 大概流程(未完)
规划组件结构 编写对应路由 具体写每个组件功能
- PHP中测试in_array、isset、array_key_exists性能
测试in_array.isset.array_key_exists性能.自己写的简易测试代码: ini_set('display_errors',true); error_reporting(E_AL ...