线性判别分析 LDA
点到判决面的距离
点\(x_0\)到决策面\(g(x)= w^Tx+w_0\)的距离:\(r={g(x)\over \|w\|}\)
广义线性判别函数
因任何非线性函数都可以通过级数展开转化为多项式函数(逼近),所以任何非线性判别函数都可以转化为广义线性判别函数。
Fisher LDA(线性判别分析)
Fisher准则的基本原理
找到一个最合适的投影轴,使两类样本在该轴上投影之间的距离尽可能远,而每一类样本的投影尽可能紧凑,从而使两类分类效果为最佳。
分类:将 d 维分类问题转化为一维分类问题后,只需要确定一个阈值点,将投影点与阈值点比较,就可以做出决策。
未知样本x的投影点 \(y= w ^{* T} x\).
Fisher方法实现步骤总结
计算各类样本均值向量:
\[
m_i={1\over N_i}\sum_{X\in w_i}X,\quad i=1,2
\]计算样本类内离散度矩阵\(S_i\)和总类内离散度矩阵\(S_w\).
(w ithin scatter matrix)
\[
S_i=\sum_{X\in w_i}(X-m_i)(X-m_i)^T,\quad i=1,2 \\
S_w=S_1+S_2
\]计算样本类间离散度矩阵\(S_b=(m_1-m_2)(m_1-m_2)^T\).
(b etween scatter matrix)求向量\(w^*\).定义Fisher准则函数:
\[
J_F(w)={w^TS_bw\over w^TS_ww}
\]
\(J_F\)取最大值时\(w^*=S_w^{-1}(m_1-m_2)\)
Fisher准则函数推导:投影之后点\(y= w ^{T} x\),y对应的离散度矩阵为\(\tilde S_w,\tilde S_b\),则用以评价投影方向w的函数为\(J_F(w)={\tilde S_b\over \tilde S_w}={w^TS_b\ w\over w^TS_w\ w}\)将训练集内所有样本进行投影:\(y=(w^*)^TX\)
计算在投影空间上的分割阈值,较常用的一种方式为:
\[
y_0={N_1\widetilde {m_1}+N_2\widetilde{m_2}\over N_1+N_2}
\]对于给定的测试X,计算它在\(w^*\)上的投影点\(y=(w^*)^TX\)。
根据决策规则分类,有:
\[
\begin{cases}
y>y_0 \Rightarrow X\in w_1 \\
y<y_0 \Rightarrow X\in w_2
\end{cases}
\]
线性判别分析 LDA的更多相关文章
- 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...
- 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)
在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...
- 运用sklearn进行线性判别分析(LDA)代码实现
基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡 ...
- 线性判别分析LDA原理总结
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结. ...
- 线性判别分析LDA详解
1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2.各类得协方差相等.虽然 ...
- 机器学习中的数学-线性判别分析(LDA)
前言在之前的一篇博客机器学习中的数学(7)——PCA的数学原理中深入讲解了,PCA的数学原理.谈到PCA就不得不谈LDA,他们就像是一对孪生兄弟,总是被人们放在一起学习,比较.这这篇博客中我们就来谈谈 ...
- 主成分分析(PCA)与线性判别分析(LDA)
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...
- 线性判别分析(LDA)准则:FIsher准则、感知机准则、最小二乘(最小均方误差)准则
准则 采用一种分类形式后,就要采用准则来衡量分类的效果,最好的结果一般出现在准则函数的极值点上,因此将分类器的设计问题转化为求准则函数极值问题,即求准则函数的参数,如线性分类器中的权值向量. 分类器设 ...
- LDA线性判别分析(转)
线性判别分析LDA详解 1 Linear Discriminant Analysis 相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2 ...
随机推荐
- iOS 静态库生成(引用第三方SDK、开源库、资源包)
一.静态库创建 打开Xcode, 选择File ----> New ---> Project 选择iOS ----> Framework & Library ---> ...
- 安装Visual studio 2013并进行单元测试
刚开始在没有老师的指导下自己弄了一个简单的单元测试,最后与老师的对比发现错误百出,于是另起一篇.安装VS2013没有什么问题,安装过程如下图: 接下来别开始练习书上的单元测试. 先是简单的创建C#的类 ...
- 个人作业-Week 1
1)快速看完整部教材,列出你仍然不懂的5到10个问题,发布在你的个人博客上. Q1:"Scrum Master不是一个官,而是一个没有行政权力的沟通者,就像微软的PM那样.他/她同时还要在团 ...
- oracle 语句之对数据库的表名就行模糊查询,对查询结果进行遍历,依次获取每个表名结果中的每个字段(存储过程)
语句的执行环境是plsql的sql窗口, 语句的目的是从整个数据库中的所有表判断 不等于某个字段的记录数 . 代码如下: declare s_sql clob:=''; -- 声明一个变量,该变量用于 ...
- 团队作业之四则运算GUI展示
一.项目Coding.net原码仓库地址:https://git.coding.net/caoying/Teamwork.git 队员: 卢琪:2016011986 曹滢:2016012102 二.P ...
- vue router 几种方式对比 (转载)
<div id="app"> <h1>Hello App!</h1> <p> <!-- 使用 router-link 组件来导 ...
- Beta版本测试第二天
一. 每日会议 1. 照片 2. 昨日完成工作 登入界面的优化与注册界面的优化,之前的登入界面与注册界面没有设计好,使得登入界面与注册界面并不好看,这次对界面进行了优化.另外尝试了找回密码的功能. 3 ...
- js异步上传图片
<!DOCTYPE html><html xmlns = "http://www.w3.org/1999/xhtml" ><head><m ...
- vmware 已将该虚拟机配置为使用 64 位客户机操作系统。但是,无法执行 64 位操作。
错误提示:已将该虚拟机配置为使用 64 位客户机操作系统.但是,无法执行 64 位操作. 此主机支持 Intel VT-x,但 Intel VT-x 处于禁用状态. 如果已在 BIOS/固件设置中禁用 ...
- Windows Server 2008 R2 安装WinDbg以及符号路径设置
1.下载WinDbg安装包(Debuggers And Tools-x64_en-us v6.12.0002.633 AMD64.msi),双击安装 2.从网站http://msdn.microsof ...