三个题目

第一题

问题描述

统计出当前这个一行一个IP的文件中,到底哪个IP出现的次数最多

解决思路

//必须要能读取这个内容  

        BufferedReader br = new BuffedReader(new FileInputStream(new File("c:/big.txt")));
// 每次读取一行
String line = null;
while( (line=br.readLine()) != null){
// 处理这读取到的一行内容的代码
} //最简单的一种思路: 初始化一个hashmap //hashmap中存储的键值对的 key : IP value : 次数 int count = 0; // 就是用来进行存储当前出现次数最多的那个IP的次数
String maxip = null;
Set<String> ips = hashmap.keySet();
for(String ip : ips){
int ipcount = hashmap.get(ip)
if(ipcount > count){
count = ipcount
maxip = ip;
}
}
System.out.println(maxip + " : " +count);

问题难点

1、当读取的文件的大小超过内存的大小时,以上的解决方案是不可行的。

2、假如说你的内存足够大,能装下这个文件中的所有ip,整个任务的执行效率会非常低,消耗的时间会非常的长。

  1GB -- 5分

  1TB --- 1024 * 5 分

3、最终整个任务就使用一台机器,那么最终整个任务执行完成所消耗的时间是和数据的大小成正比。提升服务器的执行性能来提高数据的处理速度。

    当前这一台机器的执行性能:          5分钟/GB

    提升服务器的执行性能: CPU :i3 ---> i7 1分钟/GB

在最开始的服务器领域:提升服务器对外提供服务的效率手段就是纵向提升服务器性能。理想是丰满的,现实是骨感的,但是服务器性能提升有瓶颈。

摩尔定律:每隔18-24个月,服务器的性能提升一倍。

如果说数据的增长是每隔18-24个月就增长一倍,工作量增加了一倍。工作效率也增加了一倍,那么最终完成同一个任务所花费的时间是一样的。

但是数据的增长速度是远远超过服务器性能的提升。在数据不断增长的情况下,单位时间内,服务器所需要处理的数据量是越来越大。

假如:

服务器的性能提升 速率 和 数据的增长速率一样: 在18-24个月
10GB --- 性能: 1分钟/GB --- 10分钟
20GB --- 性能: 1分钟/2GB --- 10分钟

假如:

服务器的性能提升 速率 和 数据的增长速率不一样: 在18-24个月
10GB --- 性能: 1分钟/GB --- 10分钟
100GB --- 性能: 1分钟/2GB --- 50分钟

最终的结论: 靠 纵向提升服务器性能的手段 在理论上有 瓶颈的。

最终解决方案:纵向不可取,所以采取横向扩展。

所谓的横向扩展:就是增加服务器的数量。

一个庞大的复杂任务就应该 平均分配给所有的服务器做处理

10GB 一台服务器 10分钟

100GB 一台服务器 100分钟

100GB 10台服务器 10分钟

10000GB 1000台 10分钟

在理论上 有上限么??没有

两种情况下:
1、在数据量比较小的情况下,单台服务器就可以再用户可接受的时限范围内完成任务。
2、当数据量变大时,如果用户也想在可接受的时限范围内完成任务,那么可行的方案就是进行服务器的横向扩展。

核心思想: 大事化小 分而治之
终极解决方案:
1、先把文件切碎成很多的小文件。
2、每一个服务器节点去处理一个小文件。
3、再把所有服务器的处理结果汇总到一起。
4、再把所有的数据合并到一起求出出现次数最多的那个ip。

只要是通过网络传输数据,就一定存在丢失数据的可能。

第二题

问题描述

在两个庞大文件中,文件也都是存储的URL地址(每行一个),比如文件名叫做file1和file2, 找出这两个文件中的交集(相同的URL)?

以上问题等同于SQL:select url from file1 a join file2 b on a.url = b.url

问题分析

概念:出现在在file1中的元素也出现在file2中。这些元素的集合就是交集

需求:求2个文件的交集

文件中的元素:URL

解决方案

1.当2个文件都比较小的时候

  步骤:

    1. 编写一个程序可以去读文件的内容,把文件中的所有元素都放置在一个set1中

        编写一个流处理取读取文件内容,逐行读取,每次读取到的一行放入set1中

    2. 运行相同的程序处理另外一个文件的内容,把文件中的所有元素都放置在一个set2中

    3. 先遍历一个集合,每次遍历出来的元素都去另外一个集合中判断存在不存在。如果存在,就是共同元素,这个共同元素就存储在某个集合中resultSet;如果不存在,就不是共同元素。

    4. 结果集:集合resultSet

2.当2个文件都比较大的时候

  第一种思路:采取跟第一个题目一样的大事化小的策略

  第二种思路:改良第一种思路。避免第一种思路中的很多无效匹配 a1 * a2

        必须做到合理的数据分区,数据分区的两种最基本的思路:

          1.先排序,然后分段==分区

          2.hash散列  --  求hash值,然后利用hash值求和分区个数的余数,如果余数相同,就证明这些元素在同一个分区中

        改良了实现思路之后,可以让原来应该执行16个小任务的大任务。只需要执行4个小任务即可。

终极解决方案:

1.先指定一个分区策略:hash散列

2.预估预估一下数据要被切分成多少个块,一定要保证两个文件切分出来的小文件个数成倍数

3.根据hash散列的策略,对两份文件分别进行操作

4.根据原来指定的策略,寻找对应的两个大文件中的对应小文件进行求交集操作

5.所有的结果,根本就不用再进行去重了。直接进行拼接即可。

学到的东西:

  整个大数据生态系统中的很多技术软件的底层处理数据的分区时,默认的策略都是hash散列。

第三题

问题描述

现在有一个非常庞大的URL库(10000E),然后现在还有一个URL,(迅速)判断这个URL是否在这个URL库中?

问题分析

需求:判断一个元素在不在某个集合中

解决方案

1、计数排序

1、初始化一个数组 数组的长度 就是 集合中元素的区间长度

2、遍历集合,把每个元素放入数组中 寻找对应的下标位置,找出值,然后重新设置成+1的值

3、按序遍历即可

array[0] = 1, array[1] = 2, array[2] = 0, array[3] = 3,

0 1 1 3 3 3

2、改进需求:

求出某个元素在不在这个数组(数据结构改良之前的集合)中

array[5] = count if count > 0

3、既然是判断存在不存在。

所以结果其实就是一个状态 : 要么存在 要么不存在

存在 : 1
不存在: 0

把int数组进化成 为位数组

优势:把数组所要消耗的内存降低到原来的 1/32

改良了之后这种数据结构: BitMap

真正的结构: 一个位数组 + 一个hash函数

4、BitMap再次进行进化

解决的问题: BitMap 中非常容易出现 hash碰撞的问题

咱们可以结合使用多个hash函数来搞定

缺点: 存在一定的误判率

1、如果这种数据结构(BloomFilter) 告诉你说你要验证的那个元素不在这个 BloomFilter 中
那就表示 这个元素一定不在这个 BloomFilter 中

2、如果它告诉你这个元素存在, 它告诉你的这个存在的结果 有可能是假的

真正的组成:

一个位数组 + 一组hash函数

如果要做工程实现:不管是什么变种的BloomFilter, 都一定要实现两个方法:

1、第一个方法是往BloomFilter中存入一个元素

2、第二个方法是验证一个元素是否在这个BloomFilter 中

误判率的估计:

1、位数组的长度 m

2、总元素的个数 n

3、hash函数的个数 k

hash函数的个数 并不是越多越好

在误判率最低的情况下。 这三个参数应该满足的一个公式: k = 0.7 * m / n

Hadoop学习之路(一)理论基础和逻辑思维的更多相关文章

  1. 阿里封神谈hadoop学习之路

    阿里封神谈hadoop学习之路   封神 2016-04-14 16:03:51 浏览3283 评论3 发表于: 阿里云E-MapReduce >> 开源大数据周刊 hadoop 学生 s ...

  2. 《Hadoop学习之路》学习实践

    (实践机器:blog-bench) 本文用作博文<Hadoop学习之路>实践过程中遇到的问题记录. 本文所学习的博文为博主“扎心了,老铁” 博文记录.参考链接https://www.cnb ...

  3. 小强的Hadoop学习之路

    本人一直在做NET开发,接触这行有6年了吧.毕业也快四年了(6年是因为大学就开始在一家小公司做门户网站,哈哈哈),之前一直秉承着学要精,就一直一门心思的在做NET(也是懒吧).最近的工作一直都和大数据 ...

  4. 我的hadoop学习之路

    Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上. Ha ...

  5. Linux学习笔记(Ubuntu操作系统)之hadoop学习之路

    1:检查虚拟机的ip命令:ifconfig 2:普通用户切换root用户命令:su 3:root用户切换普通用户命令:su 用户名 4:普通用户执行系统执行前面加命令:sudo 5:查询主机名命令:h ...

  6. Hadoop学习之路(十二)分布式集群中HDFS系统的各种角色

    NameNode 学习目标 理解 namenode 的工作机制尤其是元数据管理机制,以增强对 HDFS 工作原理的 理解,及培养 hadoop 集群运营中“性能调优”.“namenode”故障问题的分 ...

  7. Hadoop学习之路(十一)HDFS的读写详解

    HDFS的写操作 <HDFS权威指南>图解HDFS写过程 详细文字说明(术语) 1.使用 HDFS 提供的客户端 Client,向远程的 namenode 发起 RPC 请求 2.name ...

  8. Hadoop学习之路(五)Hadoop集群搭建模式和各模式问题

    分布式集群的通用问题 当前的HDFS和YARN都是一主多从的分布式架构,主从节点---管理者和工作者 问题:如果主节点或是管理者宕机了.会出现什么问题? 群龙无首,整个集群不可用.所以在一主多从的架构 ...

  9. Hadoop学习之路(二)Hadoop发展背景

    Hadoop产生的背景 1. HADOOP最早起源于Nutch.Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取.索引.查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题—— ...

随机推荐

  1. 【转】JUC下面线程池介绍

    介绍new Thread的弊端及Java四种线程池的使用,对Android同样适用.本文是基础篇,后面会分享下线程池一些高级功能. 1.new Thread的弊端执行一个异步任务你还只是如下new T ...

  2. 【转】java线程池

    一简介线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的.在jdk1.5之后这一情况有了很大的改观.Jdk1.5之后加入了java.util. ...

  3. Sql Server 中使用日期遍历

    一个存储过程小案例,内容如下: declare @dt datetime set @dt='2016-01-01' while (@dt<='2016-12-31') begin -- 转换字符 ...

  4. Linux下socket通信和epoll

    上一篇博客用多线程实现服务端和多个客户端的通信,但是在实际应用中如果服务端有高并发的需求,多线程并不是一个好选择. 实现高并发的一种方法是IO多路复用,也就是select,poll,epoll等等. ...

  5. 在vue中子组件修改props引发的对js深拷贝和浅拷贝的思考

    不管是react还是vue,父级组件与子组件的通信都是通过props来实现的,在vue中父组件的props遵循的是单向数据流,用官方的话说就是,父级的props的更新会向下流动到子组件中,反之则不行. ...

  6. Django基础二之URL路由系统

    一 URL配置 Django 1.11版本 URLConf官方文档 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映射表.你就是以这 ...

  7. CSS属性之attr()

    attr()准确的说,不应该是一个属性,而是一个CSS的函数,我们先看看MDN上的介绍吧: Summary The attr() CSS function is used to retrieve th ...

  8. thinkphp3.2 success方法注意

    success方法的url一定要用U()方法来生成, $this->success('修改成功',U('showlist'),3);

  9. Ubuntu搜索不到WiFi的解决办法

    时间:2018年1月25日 废话连篇:杭州下了第一场雪,冒险严寒来到实验室,打开电脑,纳尼连不上wifi了,好吧!不要被这件小事影响心情,开始修复了,经过一顿搜索,可能是因为驱动的问题,终端输入以下两 ...

  10. cocos2d-x学习网站

    非常好的学习cocos2d-x网站 强烈推荐!---游戏蛮牛