GrabCut--Opencv篇
最近因为工作需要,需要实现一个Grabcut函数。Opencv已经提供此函数,今天把opencv的例程拿出来跑了一下,对于简单的背景实现效果还不错。
OpenCV中的GrabCut算法是依据《"GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts》这篇文章来实现的。
此论文地址为:http://research.microsoft.com/en-us/um/people/ablake/papers/ablake/siggraph04.pdf
下面是Opencv中GrabCut函数调用事例。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp" #include <iostream> using namespace std;
using namespace cv; static void help()
{
cout << "\nThis program demonstrates GrabCut segmentation -- select an object in a region\n"
"and then grabcut will attempt to segment it out.\n"
"Call:\n"
"./grabcut <image_name>\n"
"\nSelect a rectangular area around the object you want to segment\n" <<
"\nHot keys: \n"
"\tESC - quit the program\n"
"\tr - restore the original image\n"
"\tn - next iteration\n"
"\n"
"\tleft mouse button - set rectangle\n"
"\n"
"\tCTRL+left mouse button - set GC_BGD pixels\n"
"\tSHIFT+left mouse button - set CG_FGD pixels\n"
"\n"
"\tCTRL+right mouse button - set GC_PR_BGD pixels\n"
"\tSHIFT+right mouse button - set CG_PR_FGD pixels\n" << endl;
} const Scalar RED = Scalar(0,0,255);
const Scalar PINK = Scalar(230,130,255);
const Scalar BLUE = Scalar(255,0,0);
const Scalar LIGHTBLUE = Scalar(255,255,160);
const Scalar GREEN = Scalar(0,255,0); const int BGD_KEY = CV_EVENT_FLAG_CTRLKEY; //Ctrl键
const int FGD_KEY = CV_EVENT_FLAG_SHIFTKEY; //Shift键 static void getBinMask( const Mat& comMask, Mat& binMask )
{
if( comMask.empty() || comMask.type()!=CV_8UC1 )
CV_Error( CV_StsBadArg, "comMask is empty or has incorrect type (not CV_8UC1)" );
if( binMask.empty() || binMask.rows!=comMask.rows || binMask.cols!=comMask.cols )
binMask.create( comMask.size(), CV_8UC1 );
binMask = comMask & 1; //得到mask的最低位,实际上是只保留确定的或者有可能的前景点当做mask
} class GCApplication
{
public:
enum{ NOT_SET = 0, IN_PROCESS = 1, SET = 2 };
static const int radius = 2;
static const int thickness = -1; void reset();
void setImageAndWinName( const Mat& _image, const string& _winName );
void showImage() const;
void mouseClick( int event, int x, int y, int flags, void* param );
int nextIter();
int getIterCount() const { return iterCount; }
private:
void setRectInMask();
void setLblsInMask( int flags, Point p, bool isPr ); const string* winName;
const Mat* image;
Mat mask;
Mat bgdModel, fgdModel; uchar rectState, lblsState, prLblsState;
bool isInitialized; Rect rect;
vector<Point> fgdPxls, bgdPxls, prFgdPxls, prBgdPxls;
int iterCount;
}; /*给类的变量赋值*/
void GCApplication::reset()
{
if( !mask.empty() )
mask.setTo(Scalar::all(GC_BGD));
bgdPxls.clear(); fgdPxls.clear();
prBgdPxls.clear(); prFgdPxls.clear(); isInitialized = false;
rectState = NOT_SET; //NOT_SET == 0
lblsState = NOT_SET;
prLblsState = NOT_SET;
iterCount = 0;
} /*给类的成员变量赋值而已*/
void GCApplication::setImageAndWinName( const Mat& _image, const string& _winName )
{
if( _image.empty() || _winName.empty() )
return;
image = &_image;
winName = &_winName;
mask.create( image->size(), CV_8UC1);
reset();
} /*显示4个点,一个矩形和图像内容,因为后面的步骤很多地方都要用到这个函数,所以单独拿出来*/
void GCApplication::showImage() const
{
if( image->empty() || winName->empty() )
return; Mat res;
Mat binMask;
if( !isInitialized )
image->copyTo( res );
else
{
getBinMask( mask, binMask );
image->copyTo( res, binMask ); //按照最低位是0还是1来复制,只保留跟前景有关的图像,比如说可能的前景,可能的背景
} vector<Point>::const_iterator it;
/*下面4句代码是将选中的4个点用不同的颜色显示出来*/
for( it = bgdPxls.begin(); it != bgdPxls.end(); ++it ) //迭代器可以看成是一个指针
circle( res, *it, radius, BLUE, thickness );
for( it = fgdPxls.begin(); it != fgdPxls.end(); ++it ) //确定的前景用红色表示
circle( res, *it, radius, RED, thickness );
for( it = prBgdPxls.begin(); it != prBgdPxls.end(); ++it )
circle( res, *it, radius, LIGHTBLUE, thickness );
for( it = prFgdPxls.begin(); it != prFgdPxls.end(); ++it )
circle( res, *it, radius, PINK, thickness ); /*画矩形*/
if( rectState == IN_PROCESS || rectState == SET )
rectangle( res, Point( rect.x, rect.y ), Point(rect.x + rect.width, rect.y + rect.height ), GREEN, 2); IplImage pImg= IplImage(res);
IplImage *img=&pImg;
cvShowImage(winName->c_str(),img);
//imshow( *winName, res );
//waitKey(30); } /*该步骤完成后,mask图像中rect内部是3,外面全是0*/
void GCApplication::setRectInMask()
{
assert( !mask.empty() );
mask.setTo( GC_BGD ); //GC_BGD == 0
rect.x = max(0, rect.x);
rect.y = max(0, rect.y);
rect.width = min(rect.width, image->cols-rect.x);
rect.height = min(rect.height, image->rows-rect.y);
(mask(rect)).setTo( Scalar(GC_PR_FGD) ); //GC_PR_FGD == 3,矩形内部,为可能的前景点
} void GCApplication::setLblsInMask( int flags, Point p, bool isPr )
{
vector<Point> *bpxls, *fpxls;
uchar bvalue, fvalue;
if( !isPr ) //确定的点
{
bpxls = &bgdPxls;
fpxls = &fgdPxls;
bvalue = GC_BGD; //0
fvalue = GC_FGD; //1
}
else //概率点
{
bpxls = &prBgdPxls;
fpxls = &prFgdPxls;
bvalue = GC_PR_BGD; //2
fvalue = GC_PR_FGD; //3
}
if( flags & BGD_KEY )
{
bpxls->push_back(p);
circle( mask, p, radius, bvalue, thickness ); //该点处为2
}
if( flags & FGD_KEY )
{
fpxls->push_back(p);
circle( mask, p, radius, fvalue, thickness ); //该点处为3
}
} /*鼠标响应函数,参数flags为CV_EVENT_FLAG的组合*/
void GCApplication::mouseClick( int event, int x, int y, int flags, void* )
{
// TODO add bad args check
switch( event )
{
case CV_EVENT_LBUTTONDOWN: // set rect or GC_BGD(GC_FGD) labels
{
bool isb = (flags & BGD_KEY) != 0,
isf = (flags & FGD_KEY) != 0;
if( rectState == NOT_SET && !isb && !isf )//只有左键按下时
{
rectState = IN_PROCESS; //表示正在画矩形
rect = Rect( x, y, 1, 1 );
}
if ( (isb || isf) && rectState == SET ) //按下了alt键或者shift键,且画好了矩形,表示正在画前景背景点
lblsState = IN_PROCESS;
}
break;
case CV_EVENT_RBUTTONDOWN: // set GC_PR_BGD(GC_PR_FGD) labels
{
bool isb = (flags & BGD_KEY) != 0,
isf = (flags & FGD_KEY) != 0;
if ( (isb || isf) && rectState == SET ) //正在画可能的前景背景点
prLblsState = IN_PROCESS;
}
break;
case CV_EVENT_LBUTTONUP:
if( rectState == IN_PROCESS )
{
rect = Rect( Point(rect.x, rect.y), Point(x,y) ); //矩形结束
rectState = SET;
setRectInMask();
assert( bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty() );
showImage();
}
if( lblsState == IN_PROCESS ) //已画了前后景点
{
setLblsInMask(flags, Point(x,y), false); //画出前景点
lblsState = SET;
showImage();
}
break;
case CV_EVENT_RBUTTONUP:
if( prLblsState == IN_PROCESS )
{
setLblsInMask(flags, Point(x,y), true); //画出背景点
prLblsState = SET;
showImage();
}
break;
case CV_EVENT_MOUSEMOVE:
if( rectState == IN_PROCESS )
{
rect = Rect( Point(rect.x, rect.y), Point(x,y) );
assert( bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty() );
showImage(); //不断的显示图片
}
else if( lblsState == IN_PROCESS )
{
setLblsInMask(flags, Point(x,y), false);
showImage();
}
else if( prLblsState == IN_PROCESS )
{
setLblsInMask(flags, Point(x,y), true);
showImage();
}
break;
}
} /*该函数进行grabcut算法,并且返回算法运行迭代的次数*/
int GCApplication::nextIter()
{
if( isInitialized )
//使用grab算法进行一次迭代,参数2为mask,里面存的mask位是:矩形内部除掉那些可能是背景或者已经确定是背景后的所有的点,且mask同时也为输出
//保存的是分割后的前景图像
grabCut( *image, mask, rect, bgdModel, fgdModel, 1 );
else
{
if( rectState != SET )
return iterCount; if( lblsState == SET || prLblsState == SET )
grabCut( *image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_MASK );
else
grabCut( *image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_RECT ); isInitialized = true;
}
iterCount++; bgdPxls.clear(); fgdPxls.clear();
prBgdPxls.clear(); prFgdPxls.clear(); return iterCount;
} GCApplication gcapp; static void on_mouse( int event, int x, int y, int flags, void* param )
{
gcapp.mouseClick( event, x, y, flags, param );
} int main( int argc, char** argv )
{ char filename[]="test.jpg";
IplImage* pImg = cvLoadImage(filename); Mat image(pImg,0);
if( image.empty() )
{
cout << "\n Durn, couldn't read image filename " << filename << endl;
return 1;
} help(); const string winName = "image";
cvNamedWindow( winName.c_str(), CV_WINDOW_AUTOSIZE );
cvSetMouseCallback( winName.c_str(), on_mouse, 0 ); gcapp.setImageAndWinName( image, winName );
gcapp.showImage(); for(;;)
{
int c = cvWaitKey(0);
switch( (char) c )
{
case '\x1b':
cout << "Exiting ..." << endl;
goto exit_main;
case 'r':
cout << endl;
gcapp.reset();
gcapp.showImage();
break;
case 'n':
int iterCount = gcapp.getIterCount();
cout << "<" << iterCount << "... ";
int newIterCount = gcapp.nextIter();
if( newIterCount > iterCount )
{
gcapp.showImage();
cout << iterCount << ">" << endl;
}
else
cout << "rect must be determined>" << endl;
break;
}
} exit_main:
cvDestroyWindow( winName.c_str() );
return 0;
}
效果图大概如下:
上三个图依次为原图、标记图片、分割后的照片,还可以继续迭代的分割,除了速度慢点,实现的效果还是非常好的。
GrabCut--Opencv篇的更多相关文章
- 【计算机视觉】OpenCV篇(10) - 模式识别中的模板匹配
什么是模式识别? 它指的是,对表征事物或现象的各种形式的信息进行处理和分析,从而达到对事物或现象进行描述.辨认.分类和解释的目的. 我们之所以可以很快辨别猫是猫.O不是0,就是因为在我们大脑中已经给猫 ...
- 【计算机视觉】OpenCV篇(9) - 轮廓(寻找/绘制轮廓)
什么是轮廓? 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 轮廓与边缘好像挺像的? 是的,确实挺像,那么区别是什么呢?简而言之,轮廓是连续的,而边缘并不全都连续(见下图示例).其实边缘主要是 ...
- 【计算机视觉】OpenCV篇(6) - 平滑图像(卷积/滤波/模糊/降噪)
平滑滤波 平滑滤波是低频增强的空间域滤波技术.空间域滤波技术即不经由傅立叶转换,直接处理影像中的像素,它的目的有两类:一类是模糊:另一类是消除噪音.空间域的平滑滤波一般采用简单平均法进行,就是求邻近像 ...
- 【计算机视觉】OpenCV篇(4) - Pycharm+PyQt5+Python小项目实战
1.下载安装 (1)Pycharm:下载链接 (2)推荐使用Qt Designer来设计界面,如果你装的是Anaconda的话,就已经自带了designer.exe,我这里使用的是Pycharm的虚拟 ...
- 【计算机视觉】OpenCV篇(5) - 仿射变换与透视变换
参考: 图像处理的仿射变换与透视变换(https://www.imooc.com/article/27535) http://ex2tron.wang/opencv-python-extra-warp ...
- opencv 学习资料
[视觉与图像]OpenCV篇:Python+OpenCV实用教程 Python+OpenCV教程15:直方图
- TGL站长关于常见问题的回复
问题地址: http://www.thegrouplet.com/thread-112923-1-1.html 问题: 网站配有太多的模板是否影响网站加载速度 月光答复: wp不需要删除其他的模板,不 ...
- opencv 61篇
(一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报 分类: OpenCV ...
- GrabCut in One Cut(基于图割算法grabcut的一次快速图像分割的OpenCV实现)----目前效果最好的图割
One cut in grabcut(grabcut算法的非迭代实现?) 本文针对交互式图像分割中的图割算法,主要想翻译一篇英文文献.不足之处请大家指正. 这是博主近期看到的效果最好,实现最简单 ...
- 图像分割之(四)OpenCV的GrabCut函数使用和源码解读
图像分割之(四)OpenCV的GrabCut函数使用和源码解读 分类: 图像处理 计算机视觉 2013-01-23 ...
随机推荐
- 编绎OpenJDK
因为对于Java里的vtable,itable,有个地方还没搞明白,不得已去下个OpenJDK来研究下. 本来很不愿意去编绎OpenJDK,因为很有可能做的只是无用功,还有可能要去解决各种找不到链接库 ...
- 六、Nginx 防盗链
盗链是指一个网站的资源(图片或附件)未经允许在其它网站提供浏览和下载.尤其热门资源的盗链,对网站带宽的消耗非常大,本文通过nginx的配置指令location来实现简单的图片和其它类型文件的防盗链. ...
- Xcode的Hello World(简单易懂)
http://www.cocoachina.com/industry/20131121/7392.html http://objccn.io/issue-6-3/
- POJ 3986 Math teacher's homework
题目 给出\(n,m_1,m_2,...,m_n\),求\(x_1 xor x_2 xor ... xor x_n=k (0 \leq x_i \leq m_i)\)的解的数量.二进制位数小于\(32 ...
- HDU-1664-Different Digits(BFS)
Problem Description Given a positive integer n, your task is to find a positive integer m, which is ...
- hdu 4771 Stealing Harry Potter's Precious(bfs)
题目链接:hdu 4771 Stealing Harry Potter's Precious 题目大意:在一个N*M的银行里,贼的位置在'@',如今给出n个宝物的位置.如今贼要将全部的宝物拿到手.问最 ...
- AsyncTask总结(经典,附带源码)
一.整体工程图 二.MainActivity.java package com.jltxgcy.asynctaskdemo; import android.app.Activity; import a ...
- UITabBarController中自定义UITabBar
1.创建多个视图控制器,放如UITabBarController中 AViewController *aa = [[AViewController alloc] init]; UINavigation ...
- SPField的GetValidatedString方法没有被调用
当我们开发自定义类型的Field时,可能会用到GetValidatedString这个方法. 但是有时候这个方法并没被调用 原因是: 当Field的Value为null时,该方法不会被调用 解决办法: ...
- Ubuntu 安装Matlab2010a
1.挂载ISO 2.到/media/iso内,在终端执行./install 3.可视化安装 4.问题 1)/usr/local/MATLAB/R2010a/bin/util/oscheck.sh:/l ...