图像分类

参考:http://cs231n.github.io/classification/

图像分类(Image Classification),是给输入图像赋予一个已知类别标签。图像分类是计算机视觉(Computer Vision)问题中一个基本问题,也是很要的一个问题。诸如物体检测、图像分割等可以利用图像分类来解决。

图像分类问题的主要难点在以下几个方面:

  • 视角差异(viewpoint variation):拍摄角度
  • 比例差异(Scale variation):缩放比例
  • 形变(Deformation):主要为非刚性形变(non-rigid deformation)
  • 遮挡(Occlusion):局部遮挡
  • 光照差异(Illumination condition):光线情况不同
  • 背景噪声(Background clutter):背景与前景接近
  • 类内差异(intra-class variance):类内差异大于类间差异


(ref: http://cs231n.github.io/assets/challenges.jpeg)

数据驱动的方法(data-driven approach):
从机器学习角度讲,训练数据(training data)为学习过程提供先验知识。

解决图像分类流程(pipeline):

  • 输入(input):包括图像和类别标签;
  • 学习(learning):学习分类器(classifier)或是模型(model)进而预测输入图像标签;
  • 评价(evaluation):比较预测标签和实际标签,评价分类器(模型)的性能。

最邻近分类(Nearest Neighbor Classifier):
(只是为了能够直观了解图像分类问题)
根据已有数据及标签(training data),预测输入图像(input image)为其最邻近图像的标签。进一步扩展可为K邻近方法,K邻接相对更加常用。相对而言,kNN在特征维度较低的时候,能力比较强的。

对于kNN而言有两个问题不好确定:
第一个就是k值的选择。K值较小时,对噪声敏感;k值较大,会削弱对decision boundary附近样本的判别能力。最简单的方法就是交叉验证,在验证集尝试不同取值;还有一些参考文件中使用\sqrt(N),其中N是每一类中样本的平均数(很明显对数据量很大的情况不适用)。
第二个就是对距离量度(distance metric)的选择。比较常用的是L1和L2距离。但是对一些问题,需要进行距离量度学习(distance metric learning)。比较常用的学习方法有LMNN(Large Margin Nearest Neighbor),ITML(Information-Theoretic Metric Learning)

关于使用kNN的一个小节:

  • 对特征做正规化(normalization),即零均值、单位方差;
  • 特征维数很高时降维,如PCA等;
  • 在训练集上划分验证集;
  • 交叉验证不同的k值及距离量度;
  • 时间开销过大时考虑Approximate Nearest Neighbor (FLANN)代替(以降低准确率为代价)。

延伸阅读:
A Few Useful Things to Know about Machine Learning,英文

机器学习那些事,中文

Recognizing and Learning Object Categories, ICCV2005的一个short course。

CNN for Visual Recognition (02)的更多相关文章

  1. CNN for Visual Recognition (01)

    CS231n: Convolutional Neural Networks for Visual Recognitionhttp://vision.stanford.edu/teaching/cs23 ...

  2. CNN for Visual Recognition (assignment1_Q1)

    参考:http://cs231n.github.io/assignment1/ Q1: k-Nearest Neighbor classifier (30 points) import numpy a ...

  3. 论文笔记之: Bilinear CNN Models for Fine-grained Visual Recognition

    Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识 ...

  4. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  5. 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition

    导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...

  6. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  7. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  8. Convolutional Neural Networks for Visual Recognition 1

    Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...

  9. 【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition

    论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locne ...

随机推荐

  1. APMServ—我用过的最优秀的PHP集成环境工具

    原文:APMServ-我用过的最优秀的PHP集成环境工具 经常折腾wordpress和各种cms,免不了要在本地测试一些程序,所以选择一款好的php集成环境就至关重要啦. 1. 我用过的php集成环境 ...

  2. CSS_img标签usemap属性图片中选择区域加入超链接

    例子: <IMG usemap="#Map" alt="" src="/images/banbian.jpg"> <map ...

  3. windows系统下c语言暂停程序

    原文:windows系统下c语言暂停程序 windows系统下,很多C语言初学者的调试时,往往没看到结果程序就退出了,据我所知的方法主要有以下几种 方法一: #include int main() { ...

  4. Appium Server源码分析之作为Bootstrap客户端

    Appium Server拥有两个主要的功能: 它是个http服务器,它专门接收从客户端通过基于http的REST协议发送过来的命令 他是bootstrap客户端:它接收到客户端的命令后,需要想办法把 ...

  5. SQL Server相似度比较函数

    原文:SQL Server相似度比较函数 相似度函数 概述    最近有人问到关于两个字段求相似度的函数,所以就写了一篇关于相似度的函数,分别是“简单的模糊匹配”,“顺序匹配”,“一对一位置匹配”.在 ...

  6. elasticsearch集群搭建实例

    elasticsearch集群搭建实例 下个月又开始搞搜索了,几个月没动这块还好没有落下. 晚上在自己虚拟机上搭建了一个简易搜索集群,分享一下. 操作系统环境: Red Hat 4.8.2-16 el ...

  7. OCP-1Z0-051-题目解析-第4题

    4. Which two statements are true regarding single row functions? (Choose two.) A. They a ccept only ...

  8. 异步提交form的时候利用jQuery validate实现表单验证

    异步提交form的时候利用jQuery validate实现表单验证相信很多人都用过jquery validate插件,非常好用,并且可以通过下面的语句来自定义验证规则    // 电话号码验证    ...

  9. Spring IOC之依赖

    一个标准的企业级应用不只有一个对象组成.即使是最简单的引用也会有个相互作用的对象以使最终呈现 在用户面前的是个连贯一致的引用. 1依赖注入 依赖注入(DI)是一个对象定义他们依赖的过程,也就是说他们一 ...

  10. Asterisk 未来之路3.0_0004

    原文:Asterisk 未来之路3.0_0004 Asterisk Wiki   asterisk 的Wiki是很多启迪和困惑的发源地,另外一个最重要的VOIP知识库www.voip-info.org ...