杨辉三角形II(Pascal's Triangle II)

问题

给出一个索引k,返回杨辉三角形的第k行。

例如,给出k = 3,返回[1, 3, 3, 1]

注意:

你可以优化你的算法使之只使用O(k)的额外空间吗?

初始思路

首先来复习复习杨辉三角形的性质(来自wiki):

  1. 杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1。
  2. 行的数字个数为个。
  3. 行的第个数字为组合数
  4. 行数字和为
  5. 除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也就是说,第行第个数字等于第行的第个数字与第个数字的和)。这是因为有组合恒等式:。可用此性质写出整个杨辉三角形。

看到第2条和5条是不是发现和 [LeetCode 120] - 三角形(Triangle) 中的最终算法有点像?没错,这里可以使用类似的方法得出杨辉三角形中第k行的数据,而且更简单:

  • 第1列和最后1列的数字永远为1
  • 其他列如性质5所述,为上一行纵坐标j-1和纵坐标j的点之和

最终得出的只是用O(k)额外空间的代码如下:

 getRow

1 class Solution {
2 public:
3 std::vector<int> getRow(int rowIndex)
4 {
5 std::vector<int> columnInfo(rowIndex + 1);
6
7 columnInfo[0] = 1;
8
9 if(rowIndex == 0)
10 {
11 return columnInfo;
12 }
13
14 columnInfo[1] = 1;
15
16 for(int i = 1; i < rowIndex + 1; ++i)
17 {
18 for(int j = i; j > 0; --j)
19 {
20 if(j == 0 || j == i)
21 {
22 columnInfo[j] = 1;
23 }
24 else
25 {
26 columnInfo[j] = columnInfo[j - 1] + columnInfo[j];
27 }
28 }
29 }
30
31 return columnInfo;
32 }
33 };

顺利通过Judge Small和Judge Large。

题外

根据杨辉三角形的性质3,我们也可以直接计算某行所有数的值。由于对称性,实际只需要计算前一半的列并将结果拷贝到后一半列即可。但是这种方法的问题是需要计算很大的阶乘,当行数达到一定大小时不做特殊处理就会溢出了。以下是一个示例,没做特殊处理,只是用int64_t保存中间结果。当输入为21时就会溢出了:

 阶乘-有缺陷

1 class SolutionV2 {
2 public:
3 std::vector<int> getRow(int rowIndex)
4 {
5 std::vector<int> columnInfo(rowIndex + 1);
6
7 nFactorial_ = 1;
8
9 for(int i = 1; i <= rowIndex; ++i)
10 {
11 nFactorial_ *= i;
12 }
13
14 columnInfo[0] = 1;
15 columnInfo[rowIndex] = 1;
16
17 for(int i = 1; i <= rowIndex / 2; ++i)
18 {
19 columnInfo[i] = CaculateCombination(rowIndex, i);
20 }
21
22 int left = 1;
23 int right = rowIndex - 1;
24
25 while(left < right)
26 {
27 columnInfo[right] = columnInfo[left];
28 ++left;
29 --right;
30 }
31
32
33 return columnInfo;
34 }
35
36 private:
37 int64_t CaculateCombination(int n, int k)
38 {
39 int64_t kFactorial = 1;
40 int64_t restFactorial = 1;
41
42 for(int i = 1; i <= k; ++i)
43 {
44 kFactorial *= i;
45 }
46
47 for(int i = 1; i <= n - k; ++i)
48 {
49 restFactorial *= i;
50 }
51
52 return nFactorial_ / (kFactorial * restFactorial);
53 }
54
55 int64_t nFactorial_;
56 };
 
 
分类: LeetCode
标签: c++leetcode算法

杨辉三角形II(Pascal's Triangle II)的更多相关文章

  1. [Swift]LeetCode119. 杨辉三角 II | Pascal's Triangle II

    Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...

  2. LeetCode 118:杨辉三角 II Pascal's Triangle II

    公众号:爱写bug(ID:icodebugs) 作者:爱写bug 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. Given a non-negative index k whe ...

  3. 【LeetCode】119. 杨辉三角 II Pascal‘s Triangle II(Python & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 方法一: 空间复杂度 O ( k ∗ ( k + 1 ...

  4. [LeetCode 119] - 杨辉三角形II(Pascal's Triangle II)

    问题 给出一个索引k,返回杨辉三角形的第k行. 例如,给出k = 3,返回[1, 3, 3, 1] 注意: 你可以优化你的算法使之只使用O(k)的额外空间吗? 初始思路 首先来复习复习杨辉三角形的性质 ...

  5. 119 Pascal's Triangle II 帕斯卡三角形 II Pascal's Triangle II

    给定一个索引 k,返回帕斯卡三角形(杨辉三角)的第 k 行.例如,给定 k = 3,则返回 [1, 3, 3, 1].注:你可以优化你的算法到 O(k) 的空间复杂度吗?详见:https://leet ...

  6. 学会从后往前遍历,例 [LeetCode] Pascal's Triangle II,剑指Offer 题4

    当我们需要改变数组的值时,如果从前往后遍历,有时会带来很多麻烦,比如需要插入值,导致数组平移,或者新的值覆盖了旧有的值,但旧有的值依然需要被使用.这种情况下,有时仅仅改变一下数组的遍历方向,就会避免这 ...

  7. 28. Triangle && Pascal's Triangle && Pascal's Triangle II

    Triangle Given a triangle, find the minimum path sum from top to bottom. Each step you may move to a ...

  8. 【LeetCode】118 & 119 - Pascal's Triangle & Pascal's Triangle II

    118 - Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, ...

  9. Pascal's Triangle,Pascal's Triangle II

    一.Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, giv ...

随机推荐

  1. PHP版本的区别

    原文:PHP版本的区别 以为这个已经写过了,发现没有,赶紧补充下. PHP的版本,自从进入5以后,发布新版本速度明显提升很多,从PHP5.2开始,5.3 .5.4 .5.5,就快要6.0了. 注:ec ...

  2. C#秘密武器之扩展方法

    原文:C#秘密武器之扩展方法 为何要用扩展方法? 作为一个.NET程序猿,我们经常要跟.net自带类库或者第三方dll类库打交道,有时候我们未必能够通过反编译来查看它们的代码,但是我们通常需要给它们扩 ...

  3. Oracle 11g 客户端的安装和配置。

    原文:Oracle 11g 客户端的安装和配置. 数据库和客户端在不同的机器之上. 在安装之前,在安装Oracle数据库的服务器上导航到下面的目录. 将listener.ora和tnsnames.or ...

  4. 多线程下HashMap的死循环是如何产生的

    前言 HashMap不是线程安全的,如果需要在多线程环境中使用Map,那么我们可以使用ConcurrentHashmap. 1.举例说明: package com.test; import java. ...

  5. Java集合之HashMap源码实现分析

    1.简介 通过上面的一篇随笔我们知道了HashSet的底层是采用Map实现的,那么Map是什么?它的底层又是如何实现的呢?这下我们来分析下源码,看看具体的结构与实现.Map 集合类用于存储元素对(称作 ...

  6. placeholder 属性的支持

    placeholder 是HTML5的. 在IE6-8中不能使用.可以使用  JQ 来设置. 给input一个value, JQ判断得到焦点时  value="": 移开焦点时,若 ...

  7. Scala Web 框架——Lift(一)准备工作

    [Lift]Scala Web 框架——Lift(一)准备工作 Lift 官方网站:http://liftweb.net/ 下载 http://liftweb.net/download 下载.zip压 ...

  8. 在希望的田野上--生物柴油(Biodiesel)光明的未来

    请看下图: 这是科学家Bernie Tao教授给美国Purdue大学的学生们出的题目"有关大豆.谷物产品的创新竞赛",实质上,就是鼓舞研究.开发及应用生物柴油(Biodiesel) ...

  9. sql内置函数pivot强大的行转列功能

    原文:sql内置函数pivot强大的行转列功能 语法: PIVOT用于将列值旋转为列名(即行转列),在SQL Server 2000可以用聚合函数配合CASE语句实现 PIVOT的一般语法是:PIVO ...

  10. 30个HTML初学者建议

    The most difficult aspect of running Nettuts+ is accounting for so many different skill levels. If w ...