统计知识选讲(一)——主成分分析(PCA)的思想
主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量,从而达到降维的目的。在原始数据“预处理”阶段通常要先对它们采用PCA的方法进行降维。本质上讲,PCA就是将高维的数据通过线性变换投影到低维空间上去,但并非随意投影,而是需要遵循一个规则:希望降维后的数据不能失真,也就是说被PCA降掉的那些维度只能是噪声或是冗余的数据。
噪声可以理解为样本数据各维度之间的相关性干扰,冗余可以理解为没有的维度(何为没用?我们PCA处理的基础是保持数据的可区分性,如果该维度上样本数据变异度很小,那么留它何用~~)。
以上是PCA的本质和基本思想。下面我们来具体分析。假设现在有很多个样本,每个样本都是多维的,他们自然都可以在多维坐标系上表示出来。现在我们第一步是要进行维度的变换,实际上就是通过旋转形成新的坐标系直线(此时还没有降维)。将各样本数据投影在这些直线上,其投影的长度是在新坐标系下的样本各维度值。通过计算各直线上投影的方差值,我们可以进行排序。方差值大说明这个新维度区分能力强,我们应该留下;反之则该去掉(降维去冗余)。
现在通过以上思想你应该可以推到出PCA的具体公式了。至于具体的公式,本讲决定直接跳过(留给下一讲),现在我可以直接告诉你大概运用什么样的方法怎样来进行PCA。完成PCA的关键是——协方差矩阵!!协方差矩阵度量的是维度与维度之间的关系,而非样本与样本之间,所以我们直接对协方差矩阵进行某种变化,是不是就可以到达降噪和去冗余的目的呢?
Absolutely!!这种变化就是矩阵的对角化(对角化实际上还没有降维,只是同维度的变换)。对角化之后非对角上的元素都是0,这就到达了去噪声的目的。而对角线上的元素是新维度的方差(你应该明白对角化的矩阵依然是协方差矩阵吧),所以我们只需要在这些方差中挑选较大的一些,舍去较小的,这样就去冗余了。通过这两步工作PCA最主要的工作就完成了。
统计知识选讲(一)——主成分分析(PCA)的思想的更多相关文章
- 统计知识选讲(二)——主成分分析(PCA)的推导和应用
1.数学推导 根据上讲的思想,我们可以用下图来进行数学上的推导. 2.PCA的步骤 1)对原始数据进行标准化处理:对该指标变量进行标准化, 2)计算相关系数矩阵(协方差矩阵) 3)计算相关系数矩阵的特 ...
- 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】
前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...
- 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...
- 主成分分析PCA详解
转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识 ...
- 主成分分析(PCA)原理及推导
原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样 ...
- 05-03 主成分分析(PCA)
目录 主成分分析(PCA) 一.维数灾难和降维 二.主成分分析学习目标 三.主成分分析详解 3.1 主成分分析两个条件 3.2 基于最近重构性推导PCA 3.2.1 主成分分析目标函数 3.2.2 主 ...
- 机器学习之主成分分析PCA原理笔记
1. 相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的 ...
- 主成分分析(PCA)原理详解_转载
一.PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上 ...
- 用scikit-learn学习主成分分析(PCA)
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 ...
随机推荐
- AngularJS应用开发思维之2:数据绑定
在声明式模板中显示数据 因为不能像jQuery一样将DOM操作混在模板里,声明式模板很快让我们变得束手束脚. 一个典型的问题:在声明式模板里怎么显示数据? 假设我们有某人的基本信息,保存在一个json ...
- Socket 学习(二)
1对1的发送和接收 Client 端 void ThreadReceive() { try { ...
- Hack 语言学习/参考---1.1 What is Hack?
What is Hack?¶ Hack is a language for HHVM that interopates seamlessly with PHP. The barrier to entr ...
- JAVA Static方法与单例模式的理解
近期用sonar測评代码质量的时候,发现一个问题,project中一些util类,曾经写的static方法都提示最好用单例的方式进行改正. 为此,我细致想了想,发现还是非常有道理的.这里谈谈我个人对s ...
- Linq的理论知识
概述 前面的博客中写到过关于Linq的一些知识,可是,没有具体的说Linq,本篇博客将会说一下Linq. 什么是Linq Linq是一个概念,它实现了数据查询使用同一方式,即,它使我们程序猿通过使用它 ...
- BEGINNING SHAREPOINT® 2013 DEVELOPMENT 文件夹
BEGINNING SHAREPOINT® 2013 DEVELOPMENT 文件夹 第一部分--開始使用SharePoint 2013 第1章节--SharePoint 2013 介绍 逐渐了解Sh ...
- CentOs Linux 常见命令
整理一些常用的命令(持续更新): 查看端口是否开启: netstat -an | grep prot (查看是否打开23端口) |:通道的意思,grep是指查看当前字符所在的行 LINUX通过下面的命 ...
- C#秘密武器之扩展方法
原文:C#秘密武器之扩展方法 为何要用扩展方法? 作为一个.NET程序猿,我们经常要跟.net自带类库或者第三方dll类库打交道,有时候我们未必能够通过反编译来查看它们的代码,但是我们通常需要给它们扩 ...
- Asp.net vNext 学习3
Asp.net vNext 学习之路(三) asp.net vNext 对于构建asp.net 程序带来了一些重大的改变,让我们开发asp.net 程序的时候更加的方便和高效. 1,可以很容易的去管理 ...
- Android使用OpenGL ES2.0显示YUV,您的手机上的数据要解决两个方面的坐标
如果说 ,我不知道,如果你不明白这个话题.连接到:http://blog.csdn.net/wangchenggggdn/article/details/8896453(下称链接①), 里面评论有非常 ...