【A003】均分纸牌【难度A】————————————————————————————————————————————————————

【题目要求】

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
    例如 N=4,4 堆纸牌数分别为:  ① 9 ② 8 ③ 17 ④ 6
    移动3次可达到目的:从 ③ 取 4 张牌放到 ④ (9  8 13  10) -> 从③ 取 3 张牌放到 ②(9  11 10  10)-> 从② 取 1 张牌放到①(10  10 10  10)。

【输入要求】

第一行:N(N 堆纸牌,1 <= N <= 100)
 第二行:A1  A2  …  An (表示 N 堆纸牌,每堆纸牌初始数,均大于零且不超过10000),两两之间有一个空格分隔。

【输出要求】

一个数,表示各堆纸牌数均达到相等时的最少移动次数。

【输入示例】

4
9 8 17 6

【输出示例】

3

【解析】

本题主要考查的是数据处理的数学思想,语法方面只需要用到简单的循环和数组就解决问题。既然要均分,我们不妨把目标值算出来,就是所有数的和再除以n,既然说只能左移或右移那我们就把当前值与目标值的差“转手”给当前+1的堆中便可达到目的。

【代码】

#include<iostream>
#include<cstdio> using namespace std; int main()
{
int n,a[100],sum=0,k=0;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a[i];
sum+=a[i];
}
int mid=sum/n;
for(int i=0;i<n;i++)
{
int t=0;
if(a[i]!=mid)
{
t=a[i]-mid;
a[i+1]+=t;
k++;
}
}
cout<<k;
return 0;
}

版权所有,转发必须标明出处,否则必须找事。

水一道NOIP2002提高组的题【A003】的更多相关文章

  1. NOIP2010提高组真题部分整理(没有关押罪犯)

    目录 \(NOIP2010\)提高组真题部分整理 \(T1\)机器翻译: 题目背景: 题目描述: 输入输出格式: 输入输出样例: 说明: 题解: 代码: \(T2\)乌龟棋 题目背景: 题目描述: 输 ...

  2. NOIP2002 提高组

    [NOIP2002] 提高组 T1.均分纸牌 算法:贪心(模拟) [分析]: 1.简化 2.过滤 3.辩证法  详见课件的例7 还有一种类似的思路是:求出平均值后,i←1 to n-1扫描,若a[i] ...

  3. noip2002提高组题解

    再次280滚粗.今天早上有点事情,所以做题的时候一直心不在焉,应该是三天以来状态最差的一次,所以这个分数也还算满意了.状态真的太重要了. 第一题:均分纸牌 贪心.(昨天看BYVoid的noip2001 ...

  4. 【枚举】Vijos P1496 火柴棒等式 (NOIP2008提高组第二题)

    题目链接: https://vijos.org/p/1496 题目大意: 给你n(n<24)根火柴棍,你可以拼出多少个形如“A+B=C”的等式?("+"和"=&qu ...

  5. $NOIp$提高组做题记录

    对了我在这里必须讲一个非常重要的事情,就是前天也就是$2019.8.21$的傍晚,我决定重新做人了$!!$ 其实之前没怎么做$Noip$题,那就从现在开始叭

  6. 洛谷-均分纸牌-NOIP2002提高组复赛

    题目描述 Description 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸 ...

  7. NOIP2014提高组第二题联合权值

    还是先看题吧: 试题描述  无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi ,每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 ...

  8. 11.5NOIP2018提高组模拟题

    书信(letter) Description 有 n 个小朋友, 编号为 1 到 n, 他们每人写了一封信, 放到了一个信箱里, 接下来每个人从中抽取一封书信. 显然, 这样一共有 n!种拿到书信的情 ...

  9. NOIP2018提高组模拟题(四)

    能量(energy) Description ​ 有一块能量田,它的形状是 n*m的矩形,每一个格子上都有一个能量值 a[x][y] (可正可负).一块矩形田的能量定义为它的每个格子的能量值之和. ​ ...

随机推荐

  1. Day3-python基础3

    本次学习内容 元组 字典 集合 字符编码 文件处理 一.元组 定义:与列表类似,定义是使用() 特性: 1.可存放多个值 2.元组里的元素是不可变的 3.有序,下标从0开始从左往右的顺序访问 元组常用 ...

  2. python程序一直在后台运行的解决办法

    刚写了个python程序,要一直在后台运行,即使断开ssh进程也在,下面是解决办法: 假如Python程序为test.py 编写shell脚本start.sh #!/bin/bash python t ...

  3. JUnit4 中@AfterClass @BeforeClass @after @before的区别对比

    JUnit4使用Java5中的注解(annotation),以下是JUnit4常用的几个annotation: @Before:初始化方法   对于每一个测试方法都要执行一次(注意与BeforeCla ...

  4. [译]Testing Node.js With Mocha and Chai

    原文: http://mherman.org/blog/2015/09/10/testing-node-js-with-mocha-and-chai/#.ViO8oBArIlJ 为什么要测试? 在此之 ...

  5. PAT Mooc datastructure 6-1

    Saving James Bond - Hard Version This time let us consider the situation in the movie "Live and ...

  6. UVA-11997 K Smallest Sums

    UVA - 11997 K Smallest Sums Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & ...

  7. PHP判断变量是否存在及函数isset() 、empty()与is_null的区别

    一.举例说明 A.如何判断一个变量是否定义? <?php // 假设不存在$test 变量 if (isset($test)) { echo '$test 已经set', '<br/> ...

  8. 知识联结梳理 : I/O多路复用、EPOLL(SELECT/POLL)、NIO、Event-driven、Reactor模式

    为了形成一个完整清晰的认识,将概念和关系梳理出来,把坑填平. I/O多路复用 I/O多路复用主要解决传统I/O单线程阻塞的问题.它通过单线程管理多个FD,当监听的FD有状态变化的时候的,调用回调函数, ...

  9. php,nginx重启

    查看php运行目录命令:which php/usr/bin/php 查看php-fpm进程数:ps aux | grep -c php-fpm 查看运行内存/usr/bin/php  -i|grep ...

  10. mongoTemplate简单用法(增删改查)

    分页时查找数量: public long countSample(String id) { Query query = new Query(); if (StringUtil.hasText(id)) ...