最近在做一个目标检测算法,训练时用到了 bootstrap 策略,于是我将PASCAL的 Ground Truth 格式的读取函数从 Matlab 改写为 C++。PASCAL 的标注格式为:

# PASCAL Annotation Version 1.00
Image filename : "对应图片路径"
Image size (X x Y x C) : 宽 x 高 x 3
Database : "数据库名称"
Objects with ground truth : 1 { "PASperson" }
# Note that there might be other objects in the image
# for which ground truth data has not been provided.
# Top left pixel co-ordinates : (0, 0)
# Details for object 1 ("PASperson")
# Center point -- not available in other PASCAL databases -- refers
# to person head center
Original label for object 1 "PASperson" : "UprightPerson"
Center point on object 1 "PASperson" (X, Y) : (257, 187)
Bounding box for object 1 "PASperson" (Xmin, Ymin) - (Xmax, Ymax) : (195, 154) - (297, 468)

我写的函数如下:

#include "stdio.h"
#include "string.h"
#include "stdlib.h" // object bounding rect
struct GtRect {
int x_min; int y_min;
int x_max; int y_max;
}; // ground truth of one image
struct GtRecord {
char* image_name;
GtRect* objs;
int obj_num; int height;
int width; int channels;
}; // return true if c is in char set s
int _is_chars(char c, const char* s, int n)
{
for (int i = ; i != n; ++i) {
if (s[i] == c) {
return ;
}
}
return ;
} void _trim_l(char* inout, const char* s)
{
int len = strlen(inout);
int s_len = strlen(s);
int i = ;
for (;i != len; ++i) {
if (!_is_chars(inout[i], s, s_len)) {
break;
}
}
int d = i;
int new_len = len - d;
for (i = ; i != new_len; ++i) {
inout[i] = inout[i + d];
}
inout[new_len] = '\0';
} void _trim_r(char* inout, const char* s)
{
int len = strlen(inout);
int s_len = strlen(s);
int i = len - ;
for (;i != -; --i) {
if (!_is_chars(inout[i], s, s_len)) {
break;
}
}
inout[i + ] = '\0';
} inline void _trim_lr(char* inout, const char* s)
{
_trim_l(inout, s);
_trim_r(inout, s);
} // read ground truth (pascal format)
//************************************
// Name: gt_pascal_read
// Returns: GtRecord
// const char * path : groundtruth file path
//************************************
GtRecord gt_pascal_read(const char* path)
{
GtRecord ret = {, , , , , };
FILE* f;
fopen_s(&f, path, "r");
int obj_num = ;
int len = ;
GtRect rct;
while (fgets(BUF1, , f) != ) {
int match_type = _match_attr(BUF1);
switch (match_type) {
case :
// read image filename
sscanf_s(BUF1, _GT_ATTR[], BUF2, );
_trim_lr(BUF2, "\n\" ");
len = strlen(BUF2);
ret.image_name = (char*)malloc(len + );
memcpy(ret.image_name, BUF2, len + );
break;
case :
// read image size, channel
sscanf_s(BUF1, _GT_ATTR[], &ret.width, &ret.height,
&ret.channels);
break;
case :
// ignore database name
break;
case :
sscanf_s(BUF1, _GT_ATTR[], &rct.x_min,
&rct.y_min, &rct.x_max, &rct.y_max);
OBJ_BUF[obj_num++] = rct;
break;
case :
// ignore polygon
case :
// ignore pixel map
case :
// ignore label
break;
}
}
fclose(f);
ret.obj_num = obj_num;
if (obj_num > ) {
ret.objs = (GtRect*)malloc(sizeof(GtRect) * obj_num);
memcpy(ret.objs, OBJ_BUF, obj_num * sizeof(GtRect));
}
return ret;
} // release pascal ground truth
//************************************
// Name: gt_pascal_release
// Returns: void
// GtRecord * r
//************************************
void gt_pascal_release(GtRecord* r)
{
free(r->image_name);
free(r->objs);
r->image_name = ;
r->objs = ;
r->width = ;
r->height = ;
r->channels = ;
r->obj_num = ;
}

gt_pascal_read 函数忽略了 groundtruth 文件中的一些属性,例如数据库名称等,如果要加回,可以在函数的几个空的 case 中添加即可。PASCAL 官方提供了几个有用的 Matlab 脚本用于读取和生成这样的 groundtruth 文件,在算法开发的过程中要多利用这样的工具。

目标检测数据库 PASCAL 格式的 Ground Truth 的解析函数的更多相关文章

  1. 目标检测模型的性能评估--MAP(Mean Average Precision)

    目标检测模型中性能评估的几个重要参数有精确度,精确度和召回率.本文中我们将讨论一个常用的度量指标:均值平均精度,即MAP. 在二元分类中,精确度和召回率是一个简单直观的统计量,但是在目标检测中有所不同 ...

  2. [炼丹术]YOLOv5目标检测学习总结

    Yolov5目标检测训练模型学习总结 一.YOLOv5介绍 YOLOv5是一系列在 COCO 数据集上预训练的对象检测架构和模型,代表Ultralytics 对未来视觉 AI 方法的开源研究,结合了在 ...

  3. 【计算机视觉】目标检测中的指标衡量Recall与Precision

    [计算机视觉]目标检测中的指标衡量Recall与Precision 标签(空格分隔): [图像处理] 说明:目标检测性能指标Recall与Precision的理解. Recall与Precision ...

  4. 目标检测之YOLO V1

    前面介绍的R-CNN系的目标检测采用的思路是:首先在图像上提取一系列的候选区域,然后将候选区域输入到网络中修正候选区域的边框以定位目标,对候选区域进行分类以识别.虽然,在Faster R-CNN中利用 ...

  5. paddlepaddle目标检测之水果检测(yolov3_mobilenet_v1)

    一.创建项目 (1)进入到https://aistudio.baidu.com/aistudio/projectoverview/public (2)创建项目 点击添加数据集:找到这两个 然后创建即可 ...

  6. 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  7. zz目标检测

    deep learning分类 目标检测-HyperNet-论文笔记 06-06 基础DL模型-Deformable Convolutional Networks-论文笔记 06-05 基础DL模型- ...

  8. (转) 技术揭秘:海康威视PASCAL VOC2012目标检测权威评测夺冠之道

    技术揭秘:海康威视PASCAL VOC2012目标检测权威评测夺冠之道 原创 2016-09-21 钟巧勇 深度学习大讲堂 点击上方“深度学习大讲堂”可订阅哦!深度学习大讲堂是高质量原创内容平台,邀请 ...

  9. 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练

    将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...

随机推荐

  1. EBS 清除高速缓存

    以R12.1.3为例: 以 “功能管理员 ”职责打开OAF界面 然后依次点击“核心服务”->“高速缓存结构”->“全局配置”->“清除所有高速缓存”->“是”,即可

  2. Linux高级调试与优化——同时抓取coredump和maps文件

    Linux内核源码 Documentation/sysctl/kernel.txt core_pattern: core_pattern: core_pattern is used to specif ...

  3. 线性回归linear regression(python脚本实现)

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  4. web开发(六) EL表达式

    在网上看见一篇不错的文章,写的详细. 以下内容引用那篇博文.转载于<http://www.cnblogs.com/whgk/p/6432044.html>,在此仅供学习参考之用. 一.EL ...

  5. Nova 启动虚拟机流程解析

    目录 文章目录 目录 前言 从请求说起 nova-api service 阶段 前言 Nova 启动虚拟机的东西太多,持续更新- 从请求说起 无论是通过 Dashboard 还是 CLI 启动一个虚拟 ...

  6. KVM + LinuxBridge 的网络虚拟化解决方案实践

    目录 文章目录 目录 前言 Linux bridge 的基本操作 创建 Bridge 将 veth pair 连上 Bridge 为 Bridge 配置 IP 地址 将物理网卡接口设备挂靠 Bridg ...

  7. Linux监控命令之==>lsof

    一.命令说明 lsof 命令的原始功能是列出打开的文件的进程,但LINUX 下,所有的设备都是以文件的行式存在的,所以,lsof 的功能很强大. 二.参数说明 -a :列出打开文件存在的进程 -c&l ...

  8. 占位图片placehold.it生成

    (1)默认:http://www.placehold.it/350x200/cccccc/969696.jpg/&text=loading.. (2)格式:http://www.placeho ...

  9. k8s、CI/CD、pipline介绍

    参照文档: https://blog.csdn.net/qq_35299863/article/details/84329798 https://github.com/xgh2016/k8s-CICD ...

  10. 本地虚拟机部署线上php程序---不需要修改数据库信息

    1.特别注意:拿来线上php程序后一般是不需要修改config.php里面的数据库连接信息的,如果修改了会报错:站点已关闭.所以 2.5 步骤是需要省略的.如果拿来的是最开始的php源码,需要配置原始 ...