转自:https://segmentfault.com/a/1190000008484167

/*

由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,在字符间插入一个字符(前提这个字符未出现在串里)。举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba和一个奇回文opxpo,被转换为#a#b#b#a##o#p#x#p#o#,长度都转换成了奇数。
  定义一个辅助数组int p[]p[i]表示以s_new[i]为中心的最长回文的半径,例如:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
s_new[i] $ # a # b # b # a # h # o # p # x # p # o #
p[i]   1 2 1 4 5 2 1 2 1 2 1 2 1 2 1 6 1 2 1 2 1

可以看出,p[i]-1正好是原字符串中最长回文串的长度。
  Manacher算法之所以快,就快在对 p 数组的求法上有个捷径。在我们解决了奇偶回文的繁琐时,剩下的难点就是求 p 数组,按照普通思维,我们是这样求解的:求解p[i],先初始化p[i]=1,再以s_new[i]为中心判断两边是否相等,相等就p[i]++。这就是普通的思维,但是我们想想,能否让p[i]的初始化不是 1,让它更大点,看下图:

  设置两个变量,mx 和 id 。
  mx 代表以s_new[id]为中心的最长回文最右边界,也就是mx=id+p[id]
  假设我们现在求p[i],也就是以s_new[i]为中心的最长回文半径,如果i<mx,如上图,那么:

 if (i < mx)
p[i] = min(p[2 * id - i], mx - i);

2 * id -i其实就是等于 j ,p[j]表示以s_new[j]为中心的最长回文半径,见上图,因为 i 和 j 关于 id 对称,我们利用p[j]来加快查找。

*/

时间复杂度:O(n)

应用:

求最长回文串长度

求原串以每个字符为中心的奇数长度回文串的长度

代码如下:

//S用来放原串,CS用来放新串
char S[maxn],CS[maxn<<1];
int P[maxn];
int Init(){
int len=strlen(S);
CS[0]='$';
CS[1]='#';
int cnt=2;
for(int i=0;i<len;i++){
CS[cnt++]=S[i];
CS[cnt++]='#';
}
CS[cnt]='\0';
return cnt;
}
int Manacher(){
int len=Init();
int ans=-1;
int id,mx=0;
for(int i=1;i<len;i++){
if(i<mx) P[i]=min(P[2*id-i],mx-i);
else P[i]=1;
while(CS[i-P[i]]==CS[i+P[i]]) P[i]++;
if(mx<i+P[i]){
id=i;
mx=i+P[i];
}
ans=max(ans,P[i]-1);
}
return ans;
}

  

Manacher模板(O(n)内求最长回文串长度)的更多相关文章

  1. UVa 11404 回文子序列(LCS求最长回文串长度)

    https://vjudge.net/problem/UVA-11404 题意: 给定一个由小写字母组成的字符串,删除其中的0个或多个字符,使得剩下的字母(顺序不变)组成一个尽量长的回文串.如果有多解 ...

  2. 字符串的最长回文串:Manacher’s Algorithm

    题目链接:Longest Palindromic Substring 1. 问题描述 Given a string S, find the longest palindromic substring ...

  3. Manacher's Algorithm 马拉车算法(求最长回文串)

    作用:求一个字符串中的最长子串,同时还可以求所有子串的长度. 题目链接: https://vjudge.net/contest/254692#problem/B 最长回文串长度的代码: int Man ...

  4. (最长回文串 模板) 最长回文 -- hdu -- 3068

    http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory ...

  5. manacher 算法(最长回文串)

    manacher算法: 定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长 将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i ...

  6. Manacher(最长回文串)

    http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符 ...

  7. ACM题目————最长回文串

    Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 回文就是正反读都是一样的字符串,如aba, abba等   Input 输入有多组cas ...

  8. Manacher算法 - 求最长回文串的利器

    求最长回文串的利器 - Manacher算法 Manacher主要是用来求某个字符串的最长回文子串. 不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复 ...

  9. HDU 3068 最长回文 (Manacher最长回文串)

    Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等   Input 输 ...

随机推荐

  1. Codeforces 360D Levko and Sets (数论好题)

    题意:有一个长度为n的数组a和一个长度为m的数组b,一个素数p.有n个集合,初始都只有一个1.现在,对(i从1到n)第i个集合执行以下操作: 对所有集合中的元素c,把c * (a[i] ^ b[j]) ...

  2. MVC默认提供了一个异常过滤器 HandleErrorAttribte特性

    这一篇记录MVC默认提供了一个异常过滤器 HandleErrorAttribte,下一篇介绍自定义异常过滤特性. 参考引用:https://www.cnblogs.com/TomXu/archive/ ...

  3. php socket简单原理及实现笔记

    1.什么是socket? socket:网络上的两个程序通过一个双向的通信连接实现数据的交换,连接的一端称为一个socket. 因此socket运行是置少有2个端组成,一个为服务端一个为客户端(客户端 ...

  4. 【leetcode】756. Pyramid Transition Matrix

    题目如下: We are stacking blocks to form a pyramid. Each block has a color which is a one letter string, ...

  5. 【集群】Redis哨兵(Sentinel)模式

    主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可用.这不是一种推荐的方式,更多时候,我们优先考虑哨兵模式. 一.哨兵 ...

  6. Nacos 常见问题及解决方法

    Nacos 开源至今已有一年,在这一年里,得到了很多用户的支持和反馈.在与社区的交流中,我们发现有一些问题出现的频率比较高,为了能够让用户更快的解决问题,我们总结了这篇常见问题及解决方法,这篇文章后续 ...

  7. mysql学习-explain中的extra

    覆盖索引就是创建的索引和查询的字段正好个数顺序一致 using filesort:mysql使用了一个外部索引 ,而非表内索引顺序进行访问,,mysql无法利用索引完成的排序操作称为文件索引,如果你创 ...

  8. 75 OpenCV编译、图像处理等

    0 引言 记录图像处理的一些经验和使用OpenCV 等库的注意事项. 1 opencv中的坐标系 一图以蔽之~ 2 opencv 3.4.0 + opencv_contrib + qt编译 主要参考了 ...

  9. docker容器管理-含静态Ip(10)

    docker run命令详解 docker run -t #表示分配一个伪终端 -i #表示让容器的标准输入打开,不跟这个参数容器启不来 -d #后台运行 -P #dockerfile中EXPOSE ...

  10. [CSP-S模拟测试]:世界线(DFS+bitset)

    题目描述 时间并不是一条单一的线,而是有许多世界线构成的流. 在一些时刻,世界线会发生分裂:同样的,它们也有可能在一些时刻收束在一起.如果将这些时刻抽象成点,那么这些世界线构成的网络,实际上是一张有向 ...