菜鸡永远都在做着变聚的梦。

题意

  有 \(4\) 个点连成一个环,连接顺序依次为 \(1-2-3-4-1\)。相邻两个点之间有个距离 \(d_{i,i+1}\)(特别地,当 \(i=4\) 时为 \(d_{4,1}\))。

  有一个人在 \(2\) 号点,他要完成距离为 \(K\) 的跑步任务并回到 \(2\) 号点,问至少需要跑多长距离。

  \(1\le d_i\le 30000,\space 1\le K\le 10^{18}\)

题解

  剩余系裸题?墨墨的等式练习题?

  考场上瞎写了一波就交了,考后发现转移情况想 sb 了炸成 \(70\) 分了……(啪)

  

  首先你需要会解决这么一个经典问题:给你 \(n(n\le 20)\) 个数 \(a_1,a_2,...,a_n\),求用这些数能加出来的 \(\ge K(K\le 10^{18})\) 的最小值(每个数可以用任意多次),即求 \(a_1 x_1 + a_2 x_2 + ... + a_n x_n\) 在 \([K,\infty)\) 范围内的最小值。

  这就要用到一个东西:剩余系(我也忘了到底叫啥了,也可能是同余系)

  虽然 \(K\) 的范围很大,但注意到 \(a_i\) 的范围并不大,所以我们任取一个数 \(a_p\)(这里为了方便设 \(p\) 为 \(n\)),以此为模数建系。

  或者说,将 \([0,\infty]\) 内的正整数按照模 \(a_p\) 的值分类,所有模 \(a_n\) 的值相同的分入一类。显然我们只需要求出同一类数中最小的能加出来的数(设其为 \(Min\)),因为在这一类中,大于等于 \(Min\) 的所有数显然都能加出来(把 \(Min\) 加上若干个 \(a_n\) 即可),所以并不用考虑它们能不能被其它 \(a_i\) 加出来。

  那怎么求每一类中最小的能加出来的数呢?

  把 \([0,a_p-1]\) 中的每个正整数视为一个点,每个点有 \(n-1\) 条出边,\(i\) 号点的第 \(j\) 条出边指向 \((i+a_j)\% a_n\) 号点,边权为 \(a_j\),然后从 \(0\) 号点出发跑单源最短路即可。

  首先时间复杂度肯定是对的,点数为 \(a_n\),边数为 \(a_n\times (n-1)\),跑 \(\text{dij}\) 复杂度稳定 \(O(a_n\log a_n)\)。

  然后考虑正确性。因为边权是 \(a_i\),所以到 \(x\) 号点的最短路就是 模 \(K\) 得 \(x\) 的一类中 最小的一个能被一堆 \(a_i\) 加出来的数。这种做法用最短路算法保证了时间复杂度的正确性……好神仙啊……

  

  然后考虑本题。我们只需要随便选取一个大小合适的数 作为剩余系的模数就行了。

  不难发现 \(w=d_{1,2}\) 就很合适,\(2w\) 代表从 \(2\) 号点跑到 \(1\) 号点再跑回来。

  可以直接以 \(d_{1,2}\) 为模数建剩余系,那么设 \(dis_{i,j}\) 表示从起点出发到达 \(i\) 号点,距离模 \(2w\) 为 \(j\) 时的最短路。

  \(8w\) 个状态跑 \(\text{dij}\),复杂度 \(O(w\log w)\)。

  我 tm 忘了剩余系的模数可以取最小值,之前一直在取最大值

#include<bits/stdc++.h>
#define ll long long
#define N 100010
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
const ll ll_inf = 9223372036854775807ll >> 1;
using namespace std;
inline ll read(){
ll x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
if(f) return x; return 0-x;
}
ll k;
int w,d[5];
ll dis[5][N];
bool vis[5][N];
priority_queue<pair<ll,pii>, vector<pair<ll,pii> >, greater<pair<ll,pii> > > Q;
void Dij(){
for(int i=0; i<4; ++i)
for(int j=0; j<w; ++j)
dis[i][j]=ll_inf, vis[i][j]=0;
dis[1][0]=0;
Q.push(mp(0,mp(1,0)));
pii tmp; int x,y;
while(!Q.empty()){
//int faq=Q.top().fi;
tmp=Q.top().se; Q.pop();
x=tmp.fi, y=tmp.se;
if(vis[x][y]) continue;
//cout<<faq<<' '<<x<<' '<<y<<endl;
vis[x][y]=1;
int x1=(x+1)%4, x2=(x+3)%4;
int y1=(y+d[x])%w, y2=(y+d[x2])%w;
if(dis[x1][y1]>dis[x][y]+d[x]){
dis[x1][y1]=dis[x][y]+d[x];
Q.push(mp(dis[x1][y1],mp(x1,y1)));
}
if(dis[x2][y2]>dis[x][y]+d[x2]){
dis[x2][y2]=dis[x][y]+d[x2];
Q.push(mp(dis[x2][y2],mp(x2,y2)));
}
}
}
int main(){
int T=read();
while(T--){
k=read();
for(int i=0; i<4; ++i) d[i]=read();
w=min(d[0]<<1,d[1]<<1);
Dij();
//cout<<dis[1][2165%1200]<<endl;
while(dis[1][k%w]>k) ++k;
printf("%lld\n",k);
}
return 0;
}

  scb 神仙推出了个不同的做法(但还是以剩余系为基础),需要对 \(4\) 个式子各求一遍经典问题,但是跑得很快 Orz 大家有兴趣可以去学(mo)一下

【hdu 6071】Lazy Running的更多相关文章

  1. 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题

    [HDU  3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...

  2. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  3. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  4. 【HDU 2196】 Computer(树的直径)

    [HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...

  5. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

  6. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  7. 【hdu 1043】Eight

    [题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=1043 [题意] 会给你很多组数据; 让你输出这组数据到目标状态的具体步骤; [题解] 从12345 ...

  8. 【HDU 3068】 最长回文

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3068 [算法] Manacher算法求最长回文子串 [代码] #include<bits/s ...

  9. 【HDU 4699】 Editor

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4699 [算法] 维护两个栈,一个栈放光标之前的数,另外一个放光标之后的数 在维护栈的同时求最大前缀 ...

随机推荐

  1. Ubuntu为mysql的root用户密码问题

    1.root用户免密码登录mysql Ubuntu装完mysql时,root用户可以免密登录,如果设置的root用户密码忘记了,想要使用root用户免密登录,修改在配置文件的[mysqld]节点下添加 ...

  2. Leetcode之动态规划(DP)专题-413. 等差数列划分(Arithmetic Slices)

    Leetcode之动态规划(DP)专题-413. 等差数列划分(Arithmetic Slices) 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为 ...

  3. Asp.NetCore应用--部署到 ubuntu 进行托管

    准备过程 netcore linux发布包(本人是通过vs2017发布) ubuntu 16.0.4虚机 进行托管 ubuntu  netcore发布文件路径 服务器设置为将对 http://< ...

  4. 引用Nuget包Microsoft.EntityFrameworkCore.Tools.DotNet报错

    错误如下 解决方法 使用VS2017或更高版本在改项目右键,选择“编辑xxx.csproj”,并添加如下一句话,就可以成功引用改Nuget包 <PackageReference Include= ...

  5. Tomcat开机自启动,通过服务名重启

    1.将Tomcat注册为服务2.服务开机自启动3.修改Tomcat进程名(待补充)4.通过命令查看日志,不需要进入到日志目录(待补充)5.tomcat进程守护(待补充) 1. 安装tomcat, 此处 ...

  6. Elasticsearch Metric聚合

    首先查看index文档信息 $ curl -XGET "http://172.16.101.55:9200/_cat/indices?v" 输出 health status ind ...

  7. 【转帖】超能课堂(188) WiFi 6凭什么可以如此“六”?

    https://www.expreview.com/69155.html 不明觉厉 这些东西 自己理解的还是少呢 电脑硬件可能一年甚至不到一年就会开始更新换代,但是路由器就不一样,它们的更新换代往往是 ...

  8. MySQL教程详解之存储引擎介绍及默认引擎设置

    什么是存储引擎? 与其他数据库例如Oracle 和SQL Server等数据库中只有一种存储引擎不同的是,MySQL有一个被称为“Pluggable Storage Engine Architectu ...

  9. F. Greedy Sequence(主席树区间k的后继)(The Preliminary Contest for ICPC Asia Nanjing 2019)

    题意: 查找区间k的后继. 思路: 直接主席树. #define IOS ios_base::sync_with_stdio(0); cin.tie(0); #include <cstdio&g ...

  10. Memcached安装 常用指令

    Memcached 源码安装 # 安装依赖yum install -y gcc gcc-c++ automake autoconf make cmake libevent-devel.x86_64# ...