[洛谷P1552] [APIO2012]派遣(左偏树)
Part 1 理解题目
很显然,通过管理关系的不断连边,最后连出来的肯定是一棵树,那么不难得出,当一个忍者作为管理者时,最优解一定是去除掉所有的较大工资的忍者,剩下的忍者符合费用要求时,答案是管理者的管理能力×剩下的忍者数量。并且我们可以推出,当一棵子数中的一棵小子树中去掉了一个忍者,那么那个忍者一定不会对当前的子树有答案贡献。
Part 2 解题思想
都理解了题目了,就很清楚了,我们在dfs过程中记录一下集合元素,并把此节点以下所有的子树全部合并入一个堆里(dfs过程中已经处理了,每个堆都是最优堆),那么开始弹元素,维护大根堆,一个个弹出最大值,直到刚好符合要求,此时答案就是堆中剩余元素的数量×当前节点的管理能力,取max。完啦!
Part 3 code
[洛谷P1552] [APIO2012]派遣(左偏树)的更多相关文章
- 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]
题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...
- 洛谷P1552 [APIO2012]派遣(左偏树)
传送门 做这题的时候现学了一波左偏树2333(好吧其实是当初打完板子就给忘了) 不难发现肯定是选子树里权值最小的点且选得越多越好 但如果在每一个点维护一个小根堆,我们得一直找知道权值大于m为止,时间会 ...
- [APIO2012]派遣 左偏树
P1552 [APIO2012]派遣 题面 考虑枚举每个节点作为管理者,计算所获得的满意程度以更新答案.对于每个节点的计算,贪心,维护一个大根堆,每次弹出薪水最大的人.这里注意,一旦一个人被弹出,那么 ...
- 2018.07.31洛谷P1552 [APIO2012]派遣(可并堆)
传送门 貌似是个可并堆的模板题,笔者懒得写左偏堆了,直接随机堆水过.实际上这题就是维护一个可合并的大根堆一直从叶子合并到根,如果堆中所有数的和超过了上限就一直弹直到所有数的和不超过上限为止,最后对于当 ...
- [洛谷P1552][APIO2012]派遣
题目大意:有一棵$n$个点的树,和一个费用$m$,每个点有一个费用和价值,请选一个点,再从它的子树中选取若干个点,使得那个点的价值乘上选的点的个数最大,要求选的点费用总和小于等于$m$ 题解:树形$d ...
- 洛谷1552 [APIO2012]派遣
洛谷1552 [APIO2012]派遣 原题链接 题解 luogu上被刷到了省选/NOI- ...不至于吧 这题似乎有很多办法乱搞? 对于一个点,如果他当管理者,那选的肯定是他子树中薪水最少的k个,而 ...
- 洛谷 - P1552 - 派遣 - 左偏树 - 并查集
首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...
- P1552 派遣 左偏树
左偏树就是一个应该用堆维护的区间,然后需要进行合并操作而发明的算法,其实这个算法没什么难的,和树剖有点像,维护几个数值,然后递归回来的时候就可以修改. 题干: 题目背景 在一个忍者的帮派里,一些忍者们 ...
- 【bzoj2809】[Apio2012]dispatching 左偏树
2016-05-31 15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...
随机推荐
- windows下使用命令行获取管理员权限
在win下运行npm install安装依赖出现错误: Error: EBUSY, resource busy or locked 搜索错误信息后发现是由于没有管理员权限,在bash中输入以下命令后运 ...
- VPS 安装MySQL
目前Centos下默认支持的数据库是MariaDB,MariaDB是mysql的增强版本,由于mysql被Oracle收购之后,mysql之父担心之后mysql会变成闭源的软件,就又开发了这个版本,支 ...
- Wireshark中的结果分析
Header checksum: 0x9899 [validation disabled] 因为,wireshark不自动做tcp校验和的检验.原因是因为:有时tcp校验和会由网卡计算,因此wires ...
- uboot学习之五-----uboot如何启动Linux内核
uboot和内核到底是什么?uboot实质就是一个复杂的裸机程序:uboot可以被配置也可以做移植: 操作系统内核本身就是一个裸机程序,和我们学的uboot和其他裸机程序没有本质的区别:区别就是我们操 ...
- 前端面试题:CSS实现水平垂直居中
这是一个挺常见的前端面试题,但是没有做过总结.有的时候可能会使用完了,很长一段时间不去使用,会慢慢忘记.所以,温故而知新,还是很有必要的. 一.绝对定位元素的居中实现 这一种工作中用的应该是最多的,兼 ...
- LA 6834 Shopping
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- 【leetcode】813. Largest Sum of Averages
题目如下: 解题思路:求最值的题目优先考虑是否可以用动态规划.记dp[i][j]表示在数组A的第j个元素后面加上第i+1 (i从0开始计数)个分隔符后可以得到的最大平均值,那么可以得到递归关系式: d ...
- Task2.设立计算图并自动计算
1.numpy和pytorch实现梯度下降法 import numpy as np # N is batch size; N, D_in, H, D_out = 64, 1000, 100, 10 # ...
- 传统IO拷贝与零拷贝技术比较
1. 传统IO 由上面图知,传统io需要经过4次copy, 3次状态切换 第一次: 从硬盘 经过 DMA 拷贝 到 kernel buffer (内核buferr) 第二次: 从kernel buff ...
- [USACO17FEB]Why Did the Cow Cross the Road III G (树状数组,排序)
题目链接 Solution 二维偏序问题. 现将所有点按照左端点排序,如此以来从左至右便满足了 \(a_i<a_j\) . 接下来对于任意一个点 \(j\) ,其之前的所有节点都满足 \(a_i ...