原文引自:http://blog.csdn.net/fengzhimohan/article/details/78471952

项目应用需要利用Spark读取mysql数据进行数据分析,然后将分析结果保存到mysql中。 
开发环境: 
java:1.8 
IDEA 
spark:1.6.2

一.读取mysql数据 
1.创建一个mysql数据库 
user_test表结构如下:

 create table user_test (
id int(11) default null comment "id",
name varchar(64) default null comment "用户名",
password varchar(64) default null comment "密码",
age int(11) default null comment "年龄"
)engine=InnoDB default charset=utf-8;

2.插入数据

 insert into user_test values(12, 'cassie', '123456', 25);
insert into user_test values(11, 'zhangs', '1234562', 26);
insert into user_test values(23, 'zhangs', '2321312', 27);
insert into user_test values(22, 'tom', 'asdfg', 28);

3.创建maven工程,命名为Test,添加java类SparkMysql

添加依赖包

pom文件内容:

 <?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>SparkSQL</groupId>
<artifactId>com.sparksql.test</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<java.version>1.8</java.version>
</properties>
<dependencies>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.24</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>net.sf.json-lib</groupId>
<artifactId>json-lib</artifactId>
<version>2.4</version>
<classifier>jdk15</classifier>
</dependency> </dependencies> </project>

4.编写spark代码

 import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext; import java.util.Properties; /**
* Created by Administrator on 2017/11/6.
*/
public class SparkMysql {
public static org.apache.log4j.Logger logger = org.apache.log4j.Logger.getLogger(SparkMysql.class); public static void main(String[] args) {
JavaSparkContext sparkContext = new JavaSparkContext(new SparkConf().setAppName("SparkMysql").setMaster("local[5]"));
SQLContext sqlContext = new SQLContext(sparkContext);
//读取mysql数据
readMySQL(sqlContext); //停止SparkContext
sparkContext.stop();
}
private static void readMySQL(SQLContext sqlContext){
//jdbc.url=jdbc:mysql://localhost:3306/database
String url = "jdbc:mysql://localhost:3306/test";
//查找的表名
String table = "user_test";
//增加数据库的用户名(user)密码(password),指定test数据库的驱动(driver)
Properties connectionProperties = new Properties();
connectionProperties.put("user","root");
connectionProperties.put("password","123456");
connectionProperties.put("driver","com.mysql.jdbc.Driver"); //SparkJdbc读取Postgresql的products表内容
System.out.println("读取test数据库中的user_test表内容");
// 读取表中所有数据
DataFrame jdbcDF = sqlContext.read().jdbc(url,table,connectionProperties).select("*");
//显示数据
jdbcDF.show();
}
}

运行结果:

二.写入数据到mysql中

 import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType; import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Properties; /**
* Created by Administrator on 2017/11/6.
*/
public class SparkMysql {
public static org.apache.log4j.Logger logger = org.apache.log4j.Logger.getLogger(SparkMysql.class); public static void main(String[] args) {
JavaSparkContext sparkContext = new JavaSparkContext(new SparkConf().setAppName("SparkMysql").setMaster("local[5]"));
SQLContext sqlContext = new SQLContext(sparkContext);
//写入的数据内容
JavaRDD<String> personData = sparkContext.parallelize(Arrays.asList("1 tom 5","2 jack 6","3 alex 7"));
//数据库内容
String url = "jdbc:mysql://localhost:3306/test";
Properties connectionProperties = new Properties();
connectionProperties.put("user","root");
connectionProperties.put("password","123456");
connectionProperties.put("driver","com.mysql.jdbc.Driver");
/**
* 第一步:在RDD的基础上创建类型为Row的RDD
*/
//将RDD变成以Row为类型的RDD。Row可以简单理解为Table的一行数据
JavaRDD<Row> personsRDD = personData.map(new Function<String,Row>(){
public Row call(String line) throws Exception {
String[] splited = line.split(" ");
return RowFactory.create(Integer.valueOf(splited[0]),splited[1],Integer.valueOf(splited[2]));
}
}); /**
* 第二步:动态构造DataFrame的元数据。
*/
List structFields = new ArrayList();
structFields.add(DataTypes.createStructField("id",DataTypes.IntegerType,true));
structFields.add(DataTypes.createStructField("name",DataTypes.StringType,true));
structFields.add(DataTypes.createStructField("age",DataTypes.IntegerType,true)); //构建StructType,用于最后DataFrame元数据的描述
StructType structType = DataTypes.createStructType(structFields); /**
* 第三步:基于已有的元数据以及RDD<Row>来构造DataFrame
*/
DataFrame personsDF = sqlContext.createDataFrame(personsRDD,structType); /**
* 第四步:将数据写入到person表中
*/
personsDF.write().mode("append").jdbc(url,"person",connectionProperties); //停止SparkContext
sparkContext.stop();
}
}

运行结果:

Spark使用Java读取mysql数据和保存数据到mysql的更多相关文章

  1. Learning Spark中文版--第五章--加载保存数据(2)

    SequenceFiles(序列文件)   SequenceFile是Hadoop的一种由键值对小文件组成的流行的格式.SequenceFIle有同步标记,Spark可以寻找标记点,然后与记录边界重新 ...

  2. spark通过JDBC读取外部数据库,过滤数据

    官网链接: http://spark.apache.org/docs/latest/sql-programming-guide.html#jdbc-to-other-databases http:// ...

  3. Learning Spark中文版--第五章--加载保存数据(1)

      开发工程师和数据科学家都会受益于本章的部分内容.工程师可能希望探索更多的输出格式,看看有没有一些适合他们下游用户的格式.数据科学家可能会更关注他们已经使用的数据格式. Motivation   我 ...

  4. Android开发学习---android下的数据持久化,保存数据到rom文件,android_data目录下文件访问的权限控制

    一.需求 做一个类似QQ登录似的app,将数据写到ROM文件里,并对数据进行回显. 二.截图 登录界面: 文件浏览器,查看文件的保存路径:/data/data/com.amos.datasave/fi ...

  5. Python学习_从文件读取数据和保存数据

    运用Python中的内置函数open()与文件进行交互 在HeadFirstPython网站中下载所有文件,解压后以chapter 3中的“sketch.txt”为例: 新建IDLE会话,首先导入os ...

  6. java读取记事本文件的部分数据添加到mysql

    package com.tideway.readtxt; import java.io.BufferedReader; import java.io.FileInputStream; import j ...

  7. Java 读取Excel内容并保存进数据库

    读取Excel中内容,并保存进数据库 步骤 建立数据库连接 读取文件内容 (fileInputStream 放进POI的对应Excel读取接口,实现Excel文件读取) 获取文件各种内容(总列数,总行 ...

  8. JAVA读取TXT文本中的数据

    现在在Demo.txt中存在数据: ABC 需要将ABC从文本文件中读取出来 代码片: import java.io.*; class FileReaderDemo { public static v ...

  9. Java读取Excel指定列的数据详细教程和注意事项

    本文使用jxl.jar工具类库实现读取Excel中指定列的数据. jxl.jar是通过java操作excel表格的工具类库,是由java语言开发而成的.这套API是纯Java的,并不依赖Windows ...

随机推荐

  1. 【转】Pandas速查手册中文版

    本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重 ...

  2. C#设计模式:观察者模式(Observer Pattern)

    一,什么是观察者模式(Observer Pattern)? 当对象间存在一对多关系时,则使用观察者模式(Observer Pattern).比如,当一个对象被修改时,则会自动通知它的依赖对象 二,代码 ...

  3. shell input value from console

    echo "Please enter some input: " read input_variable echo "You entered: $input_variab ...

  4. 力扣——gas station (加油站) python实现

    题目描述: 中文: 在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升. 你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] ...

  5. centos 升级python

    1.下载python3.6.1的包 wget https://www.python.org/ftp/python/3.6.1/Python-3.6.1.tgz 2.解压 tar -zxvf Pytho ...

  6. 使用pytorch测试单张图片(test single image with pytorch)

    以下代码实现使用pytorch测试一张图片 引用文章: https://www.learnopencv.com/pytorch-for-beginners-image-classification-u ...

  7. python 常用技巧 — 列表(list)

    目录: 1. 嵌套列表对应位置元素相加 (add the corresponding elements of nested list) 2. 多个列表对应位置相加(add the correspond ...

  8. UNP学习第七章

    一.套接口选项 函数getsockopt和setsockopt 函数fcntl 函数ioctl 二.getsockopt和setsockopt函数 #include <sys/socket.h& ...

  9. MTD系统架构和yaffs2使用、Nandflash驱动设计

    一.MTD系统架构 1.MTD设备体验 FLASH在嵌入式系统中是必不可少的,它是bootloader.linux内核和文件系统的最佳载体. 在Linux内核中引入了MTD子系统为NORFLASH和N ...

  10. web服务器和后端语言的关系

    1.web服务nginx和php的相互关系  : https://www.cnblogs.com/luckylihuizhou/p/6387171.html 个人理解:web服务器本身没有处理后端语言 ...