kernel function
下面这张图位于第一、二象限内。我们关注红色的门,以及“北京四合院”这几个字下面的紫色的字母。我们把红色的门上的点看成是“+”数据,紫色字母上的点看成是“-”数据,它们的横、纵坐标是两个特征。显然,在这个二维空间内,“+”“-”两类数据不是线性可分的。
我们现在考虑核函数,即“内积平方”。
这里面是二维空间中的两个点。
这个核函数对应着一个二维空间到三维空间的映射,它的表达式是:
可以验证,
在P这个映射下,原来二维空间中的图在三维空间中的像是这个样子:(前后轴为x轴,左右轴为y轴,上下轴为z轴)
注意到绿色的平面可以完美地分割红色和紫色,也就是说,两类数据在三维空间中变成线性可分的了。
而三维中的这个判决边界,再映射回二维空间中是这样的:这是一条双曲线,它不是线性的。
================================================
如上面的例子所说,核函数的作用就是隐含着一个从低维空间到高维空间的映射,而这个映射可以把低维空间中线性不可分的两类点变成线性可分的。
当然,我举的这个具体例子强烈地依赖于数据在原始空间中的位置。
事实中使用的核函数往往比这个例子复杂得多。它们对应的映射并不一定能够显式地表达出来;它们映射到的高维空间的维数也比我举的例子(三维)高得多,甚至是无穷维的。这样,就可以期待原来并不线性可分的两类点变成线性可分的了。
================================================
在机器学习中常用的核函数,一般有这么几类,也就是LibSVM中自带的这几类:
1) 线性:
2) 多项式:
3) Radial basis function:
4) Sigmoid:
我举的例子是多项式核函数中的情况。
在实用中,很多使用者都是盲目地试验各种核函数,并扫描其中的参数,选择效果最好的。至于什么样的核函数适用于什么样的问题,大多数人都不懂。很不幸,我也属于这大多数人,所以如果有人对这个问题有理论性的理解,还请指教。
================================================
核函数要满足的条件称为Mercer's condition。
由于我以应用SVM为主,对它的理论并不很了解,就不阐述什么了。
使用SVM的很多人甚至都不知道这个条件,也不关心它;有些不满足该条件的函数也被拿来当核函数用。
kernel function的更多相关文章
- Kernel Methods (2) Kernel function
几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...
- [转]核函数K(kernel function)
1 核函数K(kernel function)定义 核函数K(kernel function)就是指K(x, y) = <f(x), f(y)>,其中x和y是n维的输入值,f(·) 是从n ...
- 核函数(kernel function)
百度百科的解释: 常用核函数: 1.线性核(Linear Kernel): 2.多项式核(Polynomial Kernel): 3.径向基核函数(Radial Basis Function),也叫高 ...
- 统计学习方法:核函数(Kernel function)
作者:桂. 时间:2017-04-26 12:17:42 链接:http://www.cnblogs.com/xingshansi/p/6767980.html 前言 之前分析的感知机.主成分分析( ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
- Kernel Methods - An conclusion
Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...
- Kernel Methods (6) The Representer Theorem
The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...
- Kernel Methods (5) Kernel PCA
先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...
- Kernel Methods (4) Kernel SVM
(本文假设你已经知道了hard margin SVM的基本知识.) 如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep lea ...
随机推荐
- 自学Python6.5-内置模块(re、collections )
自学Python之路-Python基础+模块+面向对象自学Python之路-Python网络编程自学Python之路-Python并发编程+数据库+前端自学Python之路-django 自学Pyth ...
- Java中如何判断两个对象是否相等(Java equals and ==)
原文https://www.dutycode.com/post-140.html 如何判断两个对象相等,这个问题实际上可以看做是如何对equals方法和hashcode方法的理解. 从以下几个点来理解 ...
- 【CF451E】Devu and Flowers
题目大意:求多重集合的组合数, \(N \le 1e14,M \le 20\). 题解: 考虑容斥原理,具体做法是枚举所有情况,即:枚举子集,第 i 位为 1 表示满足第 i 个条件,正负号采用 si ...
- Test测试方法
Junit 注解 解释 @Before 在每个测试方法运行前执行的方法 @After 在每个测试方法运行后执行的方法 @BeforeClass 在类中所有测试运行之前运行的方法 @AfterClass ...
- 使用Vue自定义组件时,报did you register the component correctly? For recursive components, make sure to provide the "name" option.(未注册组件)的原因之一
错误信息: [Vue warn]: Unknown custom element: <list> - did you register the component correctly? F ...
- 【leetcode】740. Delete and Earn
题目如下: Given an array nums of integers, you can perform operations on the array. In each operation, y ...
- fiddler https
fiddler 里面的action 点选remove的那个 手机端清理凭据 在重新添加(在手机浏览器先输入代理的地址 下载证书 之后再安装)
- CSS3 文字渐变动画
背景剪裁 语法:background-clip: border-box || padding-box || context-box || no-clip || text 本次用到的就是: -webki ...
- python 正则表达式实例:
#!/usr/bin/python import re line = "Cats are smarter than dogs" matchObj = re.match( r'(.* ...
- cp:复制文件和目录
cp 命令,主要用来复制文件和目录,同时借助某些选项,还可以实现复制整个目录,以及比对两文件的新旧而予以升级等功能. cp 命令的基本格式如下:cp [选项] 源文件 目标目录/文件 选项: -a:相 ...