Pytorch笔记 (1) 初始神经网络
一、人工神经元
上方人工神经元中:
- 输入 * 权重 ——> 相当于 人神经元中 树突的功能
- 各输入 相加 ,再做非线性变化f ——> 相当于胞体的功能
- 将非线性变化的结果输出 ——> 相当于轴突
在非线性函数f固定的情况下,选择不同的权重,单个神经元 可以完成 不同的运算
但并不是全部,比如 : “或运算”
上述证明过程 可表示为: y = f( w[0] * x[0] + w[1] * w[1] + w[2] )
在 x[0] x[1] 两个输入 分别为 00 10 01 11 的情况下,最终的输出为 y = 0 1 1 1【或运算】
利用反证法 证明
二、人工神经网络
指多个神经元 ——> 组成的网络
【其中,某些神经元的 输出 会 作为 另外一些神经元的输入】
比如,用两个 权重不同的 神经元搭成的神经网络 实现或运算
神经网络可以模拟所有可能的运算
证明: 由非线性函数为 f() = max(.,0)的神经元组成的神经网络 可以模拟 任何闭区间上的连续分段线性函数
如果输入和输出直接的关系 不是分段 线性函数,还能不能用 神经网络模拟? ———— 当然可以
原因: 任意一个 输入/输出关系 都可以用分段线性函数来近似,只要分段点足够多,就可以非常准确地用 分段函数 来近似这个函数。而 分段线性函数,可以通过人工神经网络搭建来得到————> 只要人工神经网络 中的神经元 数目足够多,神经元之间的关系 足够复杂,就可以非常精确的模拟任意的 输入/ 输出关系 【即,万能近似定理】
三、神经网络的设计和权重的学习
- 神经网络结构的确定: 神经元个数越多,链接越复杂,能便是的 输入/输出 关系越多,对特定 输入/输出关系的表达 就 越精确,但也就越难找到 最合适的权重------最优的输入/输出关系 【中间 存在 折中关系】
- 神经网络中神经元权重的确定: 权重的选取 可以看作 是一个 优化问题 。 对于每一组确定的权重值,我们可以确定出优化问题的 收益或损失。当权重不合适时,优化问题的收益笑,损失大;权重合适时,优化问题的收益大,损失小 【通过调节权重,最大化收益,最小化损失,就可以得到合适的权重】
Pytorch笔记 (1) 初始神经网络的更多相关文章
- CNN学习笔记:卷积神经网络
CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...
- [Pytorch] pytorch笔记 <三>
pytorch笔记 optimizer.zero_grad() 将梯度变为0,用于每个batch最开始,因为梯度在不同batch之间不是累加的,所以必须在每个batch开始的时候初始化累计梯度,重置为 ...
- [Pytorch] pytorch笔记 <二>
pytorch笔记2 用到的关于plt的总结 plt.scatter scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, ...
- [Pytorch] pytorch笔记 <一>
pytorch笔记 - torchvision.utils.make_grid torchvision.utils.make_grid torchvision.utils.make_grid(tens ...
- Pytorch笔记 (2) 初识Pytorch
一.人工神经网络库 Pytorch ———— 让计算机 确定神经网络的结构 + 实现人工神经元 + 搭建人工神经网络 + 选择合适的权重 (1)确定人工神经网络的 结构: 只需要告诉Pytorc ...
- 【学习笔记】循环神经网络(RNN)
前言 多方寻找视频于博客.学习笔记,依然不能完全熟悉RNN,因此决定还是回到书本(<神经网络与深度学习>第六章),一点点把啃下来,因为这一章对于整个NLP学习十分重要,我想打好基础. 当然 ...
- Python机器学习笔记:卷积神经网络最终笔记
这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中 ...
- [基础]斯坦福cs231n课程视频笔记(三) 训练神经网络
目录 training Neural Network Activation function sigmoid ReLU Preprocessing Batch Normalization 权重初始化 ...
- Coursera Deep Learning笔记 改善深层神经网络:优化算法
笔记:Andrew Ng's Deeping Learning视频 摘抄:https://xienaoban.github.io/posts/58457.html 本章介绍了优化算法,让神经网络运行的 ...
随机推荐
- Kubernetes 编排神器之 Helm
什么是Kubernetes Helm?为什么要使用Helm? 前言 编写一堆Kubernetes配置文件是一件很麻烦的事情.对于一些容器,我们可能需要10多个yaml文件.维护它们是一个问题,而且在不 ...
- OSM全球地图MBTiles,非postgresql方式。
介绍: https://www.cnblogs.com/i-gps/p/3919475.html 下载和使用: https://openmaptiles.org/ OSM pbf转换: https:/ ...
- 【GitHub】命令行操作
提交文件 本地修改之后:git add . 提交到暂存区 commit一下:git commit -m "xxx" -m表示信息,不填无法commit 提交到远程仓库: ...
- Python2和Python3中列表推导式的不同
Python2和Python3中列表推导式的不同 python2 >>> x = 'my girl' >>> lst = [x for x in 'hello'] ...
- 如何理解Hibernate的延迟加载机制?
延迟加载就是并不是在读取的时候就把数据加载进来,而是等到使用时再加载.Hibernate使用了虚拟代理机制实现延迟加载.返回给用户的并不是实体本身,而是实体对象的代理.代理对象在用户调用getter方 ...
- Eclipse中SVN分支与合并
一.创建分支 Eclipse中利用svn插件创建分支,如下图 分支创建完毕,查看svn资源库中可以看到,分支信息: 二.分支合并主干 1.切换到分支,如图 切换: 2.修改分支信息 在pojo中新增T ...
- 让IE8和IE9支持 placeholder
1.原因:placeholder是h5的新属性,IE10以前的浏览器(8.9)不支持此属性. 2.解决方法:jQuery三方插件 jquery-placeholder 3.快速开始: <!DO ...
- 微信小游戏egret开发包括p2引擎小结
用egret + p2 做一个类似投球的小游戏,坑大致如下: 1.p2引擎与egret坐标不同注意转换,横坐标没什么,纵坐标egret.y = stageHeight - body.position[ ...
- RSA加密算法原理及RES签名算法简介(转载)
第一部分:RSA算法原理与加密解密 一.RSA加密过程简述 A和B进行加密通信时,B首先要生成一对密钥.一个是公钥,给A,B自己持有私钥.A使用B的公钥加密要加密发送的内容,然后B在通过自己的私钥解密 ...
- STM32使用HAL库,使用延时卡死的问题。
之前一直使用标准库的,现在转到HAL库来后,编写了第一个程序就遇到了问题.发现我使用库里的延时程序HAL_Delay()时,会卡死在里面. 根据程序,进入到这个延时程序后 ,发现HAL_GetTick ...